NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

SSC2104

FACULTY OF APPLIED SCIENCES BACHELOR OF SCIENCE HONOURS DEGREE EXAMINATIONS DEPARTMENT OF SPORTS SCIENCE AND COACHING <u>THEORY: SSC2104: BIOMECHANICS</u>

JANUARY 2011

3 HOURS (100 MARKS)

INSTRUCTIONS

Answer 4 questions only. Each question carries 25 marks. Where a question contains subdivisions, the mark value for each subdivision is given in brackets. Illustrate your answer where appropriate with large clearly labeled diagrams.

- In biomechanics, what is a quantitative analysis? [5 marks] 1) a) b) Use a dimensional analysis to determine the units of the following kinematic parameters:-Speed. i) ii) Position. Velocity. iii) iv) Acceleration. [10 marks] Suppose an individual moves from point $S_1(3, 5)$ to $S_2(6, 8)$. Find out the c) following displacements:i) Horizontal. Vertical. ii) [10 marks] iii) Resultant.
 - 2) a) Calculate velocity and acceleration given the following (using First central method):-

FRAME	TIME (S)	POSITION (M)
4	0,020	1,034
5	0,025	1,041
6	0,030	1,050
7	0,035	1,041
8	0,040	1,044

[10 marks]

b) A shot putter releases the shot at an angle of 40° from a height of 2.2m with a velocity of 13.3 m/s. Calculate the range of the shot. [9 marks]

END OF EXAMINATION			
c)	In the construction of a lever which are the three situations that may arise that define the function of the lever.	[5 marks]	
b)	Describe force couple and how it is used in gymnastics.	[10 marks]	
6) a)	Using examples outline angular analog to Newton's Second Law of motion.	[10 marks]	
c)	If a force of 200N acting 0,34m from axis of rotation is balanced by anoth force of 185N. What is the moment arm of second force.	er [5 marks]	
b)	What is the moment of inertia of a segment about a transverse axis through centre of mass with length of 0,43m, a mass of 3,7kg and radius of gyratic (segment length) of 0,302.	h on [5 marks]	
5) a)	Explain the diver's movements in completing a $1^{1}/_{2}$ somersault dive in terms of their moment of inertia and angular velocity (use diagram).	[15 marks]	
c) Describe the two properties of a fluid that most affects objects as they past through it.		s [10 marks]	
b) Or	utline Fluid Resistance as a force	[5 marks]	
4) a) W	 hat are the coefficient of friction if the friction forces are:- i) 80,9N ii) 25,7N iii) 100N and normal force 110N 	[10 marks]	
b)	Explain why a batter in baseball would wish to "choke up" on a bat when facing a pitcher with an outstanding fastball.	[15 marks]	
3) a)	Using sporting examples outline the relationship between linear velocity and angular velocity.	[10 marks]	
c)	 A cyclist completes 2,1 cycle revolutions in 1s. What is:- i) The angular distance. ii) The angular displacement. iii) The angular velocity. 	[6 marks]	