NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

SSC2104

FACULTY OF APPLIED SCIENCES
 BACHELOR OF SCIENCE HONOURS DEGREE EXAMINATIONS
 DEPARTMENT OF SPORTS SCIENCE AND COACHING
 THEORY: SSC2104: BIOMECHANICS

JANUARY 2011
3 HOURS (100 MARKS)
INSTRUCTIONS
Answer 4 questions only. Each question carries 25 marks. Where a question contains subdivisions, the mark value for each subdivision is given in brackets. Illustrate your answer where appropriate with large clearly labeled diagrams.

1) a) In biomechanics, what is a quantitative analysis?
b) Use a dimensional analysis to determine the units of the following kinematic parameters:-
i) Speed.
ii) Position.
iii) Velocity.
iv) Acceleration.
c) Suppose an individual moves from point $S_{1}(3,5)$ to $S_{2}(6,8)$. Find out the following displacements:-
i) Horizontal.
ii) Vertical.
iii) Resultant.
2) a) Calculate velocity and acceleration given the following (using First central method):-

FRAME	TIME (S)	POSITION (M)
4	0,020	1,034
5	0,025	1,041
6	0,030	1,050
7	0,035	1,041
8	0,040	1,044

[10 marks]
b) A shot putter releases the shot at an angle of 40° from a height of 2.2 m with a velocity of $13.3 \mathrm{~m} / \mathrm{s}$. Calculate the range of the shot.
c) A cyclist completes 2,1 cycle revolutions in 1 s . What is:-
i) The angular distance.
ii) The angular displacement.
iii) The angular velocity.
3) a) Using sporting examples outline the relationship between linear velocity and angular velocity.
b) Explain why a batter in baseball would wish to "choke up" on a bat when facing a pitcher with an outstanding fastball.
4) a) What are the coefficient of friction if the friction forces are:-
i) $\quad 80,9 \mathrm{~N}$
ii) $\quad 25,7 \mathrm{~N}$
iii) $\quad 100 \mathrm{~N}$ and normal force 110 N
b) Outline Fluid Resistance as a force..
c) Describe the two properties of a fluid that most affects objects as they pass through it.
5) a) Explain the diver's movements in completing a $1 \frac{1}{2}$ somersault dive in terms of their moment of inertia and angular velocity (use diagram).
b) What is the moment of inertia of a segment about a transverse axis through centre of mass with length of $0,43 \mathrm{~m}$, a mass of $3,7 \mathrm{~kg}$ and radius of gyration (segment length) of 0,302 .
c) If a force of 200 N acting $0,34 \mathrm{~m}$ from axis of rotation is balanced by another force of 185 N . What is the moment arm of second force.
6) a) Using examples outline angular analog to Newton's Second Law of motion.
b) Describe force couple and how it is used in gymnastics.
c) In the construction of a lever which are the three situations that may arise that define the function of the lever.

END OF EXAMINATION

