NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

SSC4207

FACULTY OF APPLIED

SCIENCES BACHELOR OF SCIENCE HONOURS DEGREE EXAMINATIONS

DEPARTMENT OF SPORTS SCIENCE AND COACHING

CONVENTIONAL PROGRAMME

THEORY: SSC4207: HEALTH, EXERCISE AND SPORTS RECREATION
APRIL 2014

3 HOURS (100 MARKS)

INSTRUCTIONS

Answer 4 questions only. Each question carries 25 marks. Where a question contains subdivisions, the mark value for each subdivision is given in brackets. Illustrate your answer where appropriate with large clearly labeled diagrams.

1. Design a sport recreational programme for a mixed group of male and female inmates at an old people's home in your community and justify the inclusion of each activity. **(25 marks)** 2. a) Explain the special benefits of exercise during pregnancy. (10marks) b) Design an exercise programme for pregnant women in the final trimester Indicate the benefits of each given activity. **(15marks)** 3. Describe the risks associated with strenuous exercises during pregnancy. (25marks) 4. Discuss the benefits of physical activities and recreation for the following groups of people: a) Young children. (5marks) b) Youths. (5 marks) c) Geriatrics. (5marks) d) Type 2 diabetics. (5 marks) e) Substance addicts. (5marks)

5. Critically analyse the factors that influence recreational sport participation by old	Zimbabwean
communities.	(25marks)
6. Describe the following classic theories of recreation and play;	
a) The surplus Energy theory.	(10marks)
b) The relaxation Theory.	(15marks)
END OF EXAMINATION.	