NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF THE BUILT ENVIRONMENT

DEPARTMENT OF ARCHITECTURE BACHELOR OF ARCHITECTURAL STUDIES (HONOURS) DEGREE 2010-2011 ACADEMIC YEAR PART I - SECOND SEMESTER EXAMINATIONS – JUNE 2011 AAR 1206 – APPLIED STRUCTURAL STATICS AND DYNAMICS II

Instructions

Duration: 3 Hours

Answer all questions.

QUESTION 1

(a) A steel bar 100mm x 10mm in cross section is transmitting a pull of 135 kN. Calculate the stress in the bar.	
	Marks 6.0
(b) A timber tension member is 100 mm square in cross section. Calculate the safe load for the timber if the permissible stress is 8 N/mm ² .	
	Marks 6.0
(c) A steel bar 100mm x 12mm in cross section and 3 meter long is subjected to an axial pull of 130 kN. How much will it increase in length if the modulus of elasticity $E = 210$ kN/mm ² .	
	Marks 6.0
(d) Calculate the cross-sectional dimension of a square brick pier to support an axial load of 360 kN if the permissible stress for the brickwork is 1.7 N/mm ² .	
	Marks 7.0

[25]

QUESTION 2

The following figure shows a system of concurrent forces acting on a body. Calculate the magnitude and direction of the resultant

