NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF THE BUILT ENVIRONMENT

DEPARTMENT OF ARCHITECTURE

BACHELOR OF ARCHITECTURAL STUDIES (HONOURS) DEGREE 2010-2011 ACADEMIC YEAR
PART I – SUPPLEMENTARY EXAMINATIONS – AUGUST 2011
AAR 1206 – APPLIED STRUCTURAL STATICS AND DYNAMICS

<u>Instructions</u> <u>Duration</u>: 3 Hours

Answer all questions.

QUESTION 1

(a) During a compression test a block of concrete 100mm square and 200mm long shortened 0.2mm when a load of 155kN was applied. Calculate the stress and strain and Modulus of Elasticity for the concrete.

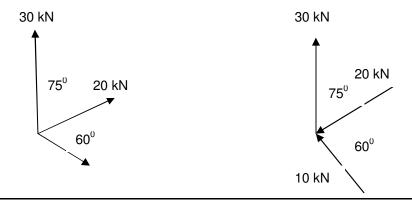
[8]

(b) A hollow steel tube of 100mm external diameter and 80mm internal diameter and 3m long is subjected to a tensile load of 400kN . Calculate the stress in the material and the amount the tube stretches if Modulus of Elasticity is 200 000 N/mm 2 .

[8]

(c) A tie bar is 75mm wide and it has to sustain a pull of 100kN. Calculate the required thickness of the bar if the permissible stress is 150N/mm²

[5]

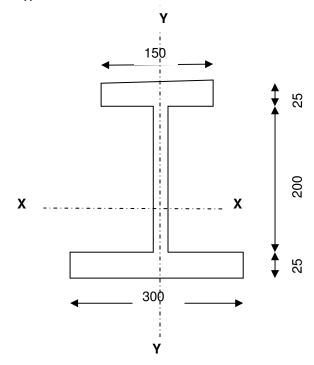

(d) A bar of steel, circular in section is required to transmit a pull of 40kN. If the permissible Stress is 150N/mm² calculate the diameter of the bar.

[4]

[25]

QUESTION 2

Figure 1.0 and 2.0 show a system of concurrent forces acting on a body. Calculate the magnitude and direction of the resultant.



Page 1 of 2

10 kN		
Figure 1.0	Figure 2.0	
	[25	[]

QUESTION 3

Calculate the I_{xx} and I_{yy} of the following I- section

[25]

QUESTION 4

Calculate the reactions and draw the bending moment and shear force diagram of the beam shown in Figure 2.0.

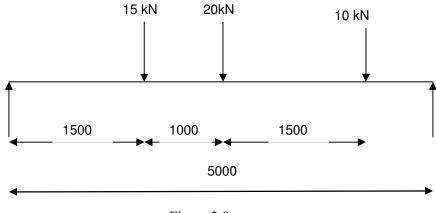


Figure 2.0

[25]