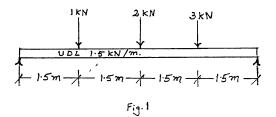
NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF ARCHITECTURE AND QUANTITY SURVEYING

DEPARTMENT OF ARCHITECTUREBACHELOR OF ARCHITECTURAL STUDIES (HONOURS) DEGREE

PART II SUPPLENTARY EXAMINATIONS – AUGUST 2004 AAR 2105 STRUCTURAL DESIGN I


Instructions

Time: 3 Hours

Answer any FOUR questions.
All questions carry equal marks.

QUESTION 1

Draw Bending Moment and Shear force diagram for the beam in Fig. 1

QUESTION 2

Calculate I_{xx} and I_{yy} about the axis passing through its centroid and parallel to the base of the Section Shown in fig. 2.

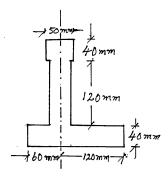


Fig. 2

■ Page 1 of 1

QUESTION 3

A timber Cantilever beam project 2m and carries a 6KN point load at the free end. The beam is 150mm to 250 mm, as shown in fig. 3. Calculate the stresses in the extreme fibres

- At the support
 At a point 1m from the support

Ignore the weight of the beam.

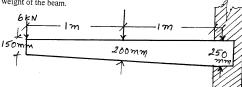
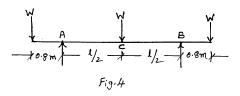
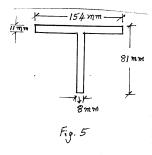



Fig. 3


QUESTION 4

The symmetrically loaded beam, shown in fig. 4. Carries three loads, and the internal span I to be such that the negative bending moment at each support equals the positive bending moment at C, what is the span I? If each load W is 100 KN, choose a suitable UB ($f = 165 \text{ N/mm}^2$).

QUESTION 5

A $152mm \times 76$ mm @ 19kg/m steel tee section, as shown in fig. 5, may be stressed to not more than 155 N/mm2. What safe inclusive uniform load can the section Carry as a beam spanning 2.0m between simple supports?

Page 2 of 2