	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF BUILT ENVIRONMENT DEPARTMENT ARCHITECTURE STRUCTURAL DESIGN I
	ΔΔΡ2105
Examination Pape	r
December 2017	

This examination paper consists of 9 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: GRAPH PAPER

Examiner's Name: Eng. V.V.DESAI

INSTRUCTIONS

- 1. Answer all questions
- 2. Use of calculators is permissible

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
TOTAL	100

QUESTION ONE

Describe the following:

a.	Limit States	(5)
b.	Characteristic Load	(5)
c.	Partial Safety factors	(5)
d.	Ultimate Design Load	(5)
e.	Limit State Design	(5)

QUESTION TWO

A simply supported reinforced concrete slab spans 5.0m.

Design a suitable slab using Grade 25 concrete and high yield reinforcement to support the following characteristic loads:

Imposed load 4.0kN/m²

Finishes 0.5kN/m²

QUESTION THREE

- a. Explain why timber element design is based on Elastic Theory. (6)
- b. Distinguish between grade stress and permissible stress (6)
- c. What are modification factors and why are they used in design. (13)

QUESTION FOUR

A flat roof spanning 4.25m is to be designed using timber joists at 600mm centres. The load from the proposed roof construction is as follows:

Dead load	1.0kN/m ²	
Imposed load 0.3kN/m ²		K ₇
Determine the size of suitable SC3 joist		For h = 200mm is 1.046
Grade Stress for SC3 timber:		h = 225mm is 1.032
Bending stress parallel to grain 5.3N/mm ²		h = 250mm is 1.20
Modulus of el	asticity E _{min =} 5800N/mm ²	
Select appropriate modification factors		

K₁ = 1.0; K₂ = 1.0; K₃ = 1.0; K₈ = 1.1