NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF ARCHITECTURE AND QUANTITY SURVEYING

DEPARTMENT OF ARCHITECTURE

 BACHELOR OF ARCHITECTURAL STUDIES (HONOURS) DEGREE
PART II SECOND SEMESTER EXAMINATIONS - MAY 2003

AAR 2205 - STRUCTURAL DESIGN II

Instructions

Time: 3 hours
Question 1 and 2 are compulsory
Answer any 3 from the remaining questions
All Questions carry 20 marks.

Question 1

A section of floor is to be carried by $125 \mathrm{~mm} \times 75 \mathrm{~mm}$ timber joints spanning the 3 m . length. The bending stress must not exceed $4.6 \mathrm{~N} / \mathrm{mm}^{2}$ the total inclusive load per m^{2} of floor is estimate to be 2.0 KN . At what cross centres in mm must the timber beams be fixed?

Question 2

Design a suitable R.C. column of square section to support an arial load of 1000 KN . Size of column 400 mm x 400 mm . Design a suitable footing for the column. Safe bearing capacity of the soil $=200 \mathrm{KN} / \mathrm{m}^{2}$.
Permissable compressive stress in concrete $=4 \mathrm{~N} / \mathrm{mm}^{2}$, Permissible compressive stress in steel $=130 \mathrm{~N} / \mathrm{mm}^{2}$, Concrete m15 Grade.

Question 3

Design a simply supported slab having clear dimensions of $2.5 \mathrm{~m} \times 10 \mathrm{~m}$. The long sides of the slab are supported on 230 mm thick brick walls on one side and 300 mm beam on the other side. Live load on the roof $=1.5 \mathrm{KN} / \mathrm{m} \cdot t y=250 \mathrm{~N} / \mathrm{mm} 2$. teu $=3-\mathrm{N} / \mathrm{mm} 2$. Concrete m15 Grade.

Question 4

Design a cantilever 3.50 m . long carrying a live load of $10600 \mathrm{~N} / \mathrm{m} . t y=250 \mathrm{~N} / \mathrm{mm}^{2}$, teu $=30 \mathrm{~N} / \mathrm{mm}^{2}$, Concrete m15 Grade.

Question 5

Design a rectangular singly reinforced beam having a clear span of 4.5 mt . for a super imported load of 60 KN per meter run. The beam has 30 cm bearing at the ends. $t y=250 \mathrm{~N} / \mathrm{mm}^{2}$, teu $=30 \mathrm{~N} / \mathrm{mm}^{2}$, Concrete m 15 Grade.

Question 6

A reinforced concrete column $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ in section is reinforced with 8 bars of 20 mm diameter. If the permissible stress in concrete is $4 \mathrm{~N} / \mathrm{mm}^{2}$, find the safe compressive for the column, by simple elastic theory, and as per code take modular ratio $=18$. Permissible stress in steel $=130 \mathrm{~N} / \mathrm{mm}^{2}$.

