NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 FACULTY OF THE BUILT ENVIRONMENT

DEPARTMENT OF ARCHITECTURE
BACHELOR OF ARCHITECTURAL STUDIES (HONOURS) DEGREE 2012-13 ACADEMIC YEAR
PART II - SECOND SEMESTER EXAMINATION - MAY 2013
AAR 2205 - STRUCTURAL DESIGN II

Instructions
Answer all questions.

Duration: 3 Hours
Total Marks 100

QUESTION 1

A simply supported reinforced concrete slab spans 5.0m. Design a suitable slab using grade 25 concrete and grade 460 reinforcement to support the following loads
Imposed $4.0 \mathrm{kN} / \mathrm{m}^{2}$
Finishes $0.5 \mathrm{kN} / \mathrm{m}^{2}$

QUESTION 2

(a) Explain the difference between a short and a slender column
(b) A short column supports a characteristic dead load of 650 kN and a characteristic live load of 450 kN , the size of the column being $250 \mathrm{~mm} \times 250 \mathrm{~mm}$. Using grade 30 concrete and grade 460 reinforcement calculate the size of reinforcement required. Draw a sketch of the column

QUESTION 3

For the Column in Question 2 design a base assuming the following:
Grade 30 concrete and grade 460 reinforcement
Permissible soil pressure $150 \mathrm{kN} / \mathrm{m}^{2}$

QUESTION 4

A timber beam with an effective span of 3.0 m supports a uniformly distributed load of 3.5 kN/m including self-weight of the beam. Determine a suitable section for the beam using timber of strength class SC3. Assume that the beam is held in position Assume the following

Strength Class of timber SC 3
For SC 3 Grade
Bending stress parallel to grain $=5.3 \mathrm{~N} / \mathrm{mm}^{2}$
Shear stress parallel to grain $=0.67 \mathrm{~N} / \mathrm{mm}^{2}$
Modulus of Elasticity $E=5800 \mathrm{~N} / \mathrm{mm}^{2}$ Long term loading

Modification Factors:
K3, duration of loading 1.0
K8 Load sharing system 1.1
K7 Depth factor
for $d=225 \quad 1.032$
for $d=200 \quad 1.046$

