	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF BUILT ENVIRONMENT DEPARTMENT ARCHITECTURE STRUCTURAL DESIGN II AAR 2205
May 2017	
	This examination paper consists of 6 pages

This examination paper consists of 6 pages

Time Allowed:	3 hours
Total Marks:	100
Special Requirements:	GRAPH PAPER, TABLES
Examiner's Name:	Eng. V.V. DESAI

INSTRUCTIONS

- 1. Answer all questions
- 2. Use of calculators is permissible

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
TOTAL	100

QUESTION ONE

A simply supported reinforced concrete slab spans 5.0 m. Design a suitable slab using grade 25 concrete and grade 460 reinforcement to support the following loads

Imposed 4.0kN/m²

Finishes 0.5kN/m²

QUESTION TWO

A short column supports a characteristic dead load of 650 kN and a characteristic live load of 450 kN, column being 250mm x 250mm. Design a suitable isolated foundation for the column assuming the following:

Permissible soil pressure 150kN/m²

Grade 30 concrete and Grad 460 reinforcement

QUESTION THREE

A simply supported beam spanning 8m has a uniformly distributed characteristic dead and characteristic live load of 20kNm and 10kN/m respectively. Assuming the beam is fully restrained laterally, select a suitable UB section in Grade 43 steel to satisfy the bending and shear considerations.

QUESTION FOUR

a. What are "characteristic loads?"	[5]
b. Define partial safety factors and describe why they are sued in design.	[5]
c. What are the partial safety factors for dead and live loads	[5]
d. Explain the difference between characteristic loads and design loads.	[5]
e. Explain the difference between Ultimate Moment of Resistance and Design Mom	ent. [5]

Page 2 of 6

Fig. 6 Stress diagram

The area of tension reinforcement is then given by:

$$A_8 = \frac{M}{(0.95f_y)z}$$

where z is obtained from Table 14.

For two-way spanning slabs, care should be taken to use the value of d appropriate to the direction of the reinforcement.

Tab	le 14	Leve	r arm	and	neutro	al axi	s dep	th fa	ctors	for	slabs			
0.05	0.06	0.07	0.08	0.09	0.100	0.104	0.110	0.119	0.130	0.132	0.140	0.144	0.150	0.15
0.94	0.93	0.91	0.90	0.89	0.87	0.87	0.86	0.84	0.82	0.82	0.81	0.80	0.79	0.77
0.13	0.16	0.19	0.22	0.25	0.29	0.30	0.32	0.35	0.39	0.40	0.43	0.45	0.47	0.50
		30%				-	25	*	20	1%	1	5%	0-1	0%
	Tab 0.05 0.94 0.13	Table 14 0.05 0.06 0.94 0.93 0.13 0.16	CODE O.06 O.07 0.94 0.93 0.91 0.13 0.16 0.19 30% 30%	Table 14 Lever arm 0.05 0.06 0.07 0.08 0.94 0.93 0.91 0.90 0.13 0.16 0.19 0.22 30%	Table 14 Lever arm and 0.05 0.06 0.07 0.08 0.09 0.94 0.93 0.91 0.90 0.89 0.13 0.16 0.19 0.22 0.25 30%	Color O.06 O.07 O.08 O.09 O.100 0.94 0.93 0.91 0.90 0.89 0.87 0.13 0.16 0.19 0.22 0.25 0.29 30%	CODE <th< td=""><td>CODE O.06 O.07 O.08 O.09 O.100 O.104 O.110 0.94 0.93 0.91 0.90 0.89 0.87 0.87 0.86 0.13 0.16 0.19 0.22 0.25 0.29 0.30 0.32 30%</td><td>Constraint Constraint Constra</td><td>Constraint Constraint Constra</td><td>No.05 0.06 0.07 0.08 0.09 0.100 0.104 0.110 0.119 0.130 0.132 0.94 0.93 0.91 0.90 0.89 0.87 0.87 0.86 0.84 0.82 0.82 0.13 0.16 0.19 0.22 0.25 0.29 0.30 0.32 0.35 0.39 0.40</td><td>Table 14 Lever arm and neutral axis depth factors for slabs 0.05 0.06 0.07 0.08 0.09 0.100 0.104 0.110 0.119 0.130 0.132 0.140 0.94 0.93 0.91 0.90 0.89 0.87 0.87 0.86 0.84 0.82 0.82 0.81 0.13 0.16 0.19 0.22 0.25 0.29 0.30 0.32 0.35 0.39 0.40 0.43 30% ***** ***** ******</td><td>Table 14 Lever arm and neutral axis depth factors for slabs 0.05 0.06 0.07 0.08 0.09 0.100 0.104 0.110 0.119 0.130 0.132 0.140 0.144 0.94 0.93 0.91 0.90 0.89 0.87 0.87 0.86 0.84 0.82 0.82 0.81 0.80 0.13 0.16 0.19 0.22 0.25 0.29 0.30 0.32 0.35 0.39 0.40 0.43 0.45 30% 25% 20% 15%</td><td>CODE 0.06 0.07 0.08 0.09 0.100 0.104 0.110 0.119 0.130 0.132 0.140 0.144 0.150 0.07 0.08 0.09 0.100 0.104 0.110 0.119 0.130 0.132 0.140 0.144 0.150 0.94 0.93 0.91 0.90 0.89 0.87 0.87 0.86 0.84 0.82 0.81 0.80 0.79 0.13 0.16 0.19 0.22 0.25 0.29 0.30 0.32 0.35 0.39 0.40 0.43 0.45 0.47 30% U</td></th<>	CODE O.06 O.07 O.08 O.09 O.100 O.104 O.110 0.94 0.93 0.91 0.90 0.89 0.87 0.87 0.86 0.13 0.16 0.19 0.22 0.25 0.29 0.30 0.32 30%	Constraint Constra	Constraint Constra	No.05 0.06 0.07 0.08 0.09 0.100 0.104 0.110 0.119 0.130 0.132 0.94 0.93 0.91 0.90 0.89 0.87 0.87 0.86 0.84 0.82 0.82 0.13 0.16 0.19 0.22 0.25 0.29 0.30 0.32 0.35 0.39 0.40	Table 14 Lever arm and neutral axis depth factors for slabs 0.05 0.06 0.07 0.08 0.09 0.100 0.104 0.110 0.119 0.130 0.132 0.140 0.94 0.93 0.91 0.90 0.89 0.87 0.87 0.86 0.84 0.82 0.82 0.81 0.13 0.16 0.19 0.22 0.25 0.29 0.30 0.32 0.35 0.39 0.40 0.43 30% ***** ***** ******	Table 14 Lever arm and neutral axis depth factors for slabs 0.05 0.06 0.07 0.08 0.09 0.100 0.104 0.110 0.119 0.130 0.132 0.140 0.144 0.94 0.93 0.91 0.90 0.89 0.87 0.87 0.86 0.84 0.82 0.82 0.81 0.80 0.13 0.16 0.19 0.22 0.25 0.29 0.30 0.32 0.35 0.39 0.40 0.43 0.45 30% 25% 20% 15%	CODE 0.06 0.07 0.08 0.09 0.100 0.104 0.110 0.119 0.130 0.132 0.140 0.144 0.150 0.07 0.08 0.09 0.100 0.104 0.110 0.119 0.130 0.132 0.140 0.144 0.150 0.94 0.93 0.91 0.90 0.89 0.87 0.87 0.86 0.84 0.82 0.81 0.80 0.79 0.13 0.16 0.19 0.22 0.25 0.29 0.30 0.32 0.35 0.39 0.40 0.43 0.45 0.47 30% U

(b) The spacing of main bars should not exceed the lesser of:

3d, 300mm, or
$$\frac{70000\beta}{pf_{\rm v}}$$

where p is the reinforcement percentage and 0.3 < p < 1.0 and

$$\beta$$
 is the ratio:
moment after redistribution
moment before redistribution

If $p \ge 1$ use p = 1 in formula above. Spacing of distribution bars should not exceed the lesser of:

3d or 400mm.

Page 3 of 6

Bar size (mm) — 1 6 8 10 12 11 16 20 3 25 4 32 8	Number of bars														
	1	2	3	4	5	6	7	8	9	10					
6	28.3	56.6	84.9	113	142	170	198	326	200	202					
8	50.3	101	151	201	252	302	362	402	450	283					
10	78.5	157	236	314	393	471	550	628	953	503					
12	113	226	339	452	566	679	792	905	1020	1120					
16	201	402	603	804	1010	1210	1410	1610	1020	1130					
20	314	628	943	1260	1570	1890	2200	2510	2830	2010					
25	491	982	1470	1960	2450	2950	2440	2020	6.47545						
32	804	1610	2410	3220	4020	4930	0440	3930	4420	4910					
40	1260	2510	3770	5030	6280	7540	8800	10100	11300	8040 12600					

Table 3.10 Cross-sectional areas of groups of bars (mm²)

Table 3.22 Cross-sectional area per metre width for various bar spacing (mm²)

Bar size (mm) 6 8 10 12	Spacing of bars													
	50	75	100	125	150	175	200	250	300					
6	566	377	283	226	199	100								
8	1010	671	503	402	103	162	142	113	94.3					
10	1570	1050	795	670	335	287	252	201	168					
12	2260	1510	1120	628	523	449	393	314	262					
16	4020	2690	1130	905	754	646	566	452	377					
20	6020	2660	2010	1610	1340	1150	1010	804	670					
20	6280	4190	3140	2510	2090	1800	1570	1260	1000					
20	9820	6550	4910	3930	3270	2810	2450	1200	1050					
32	16100	10700	8040	6430	5360	4000	2400	1390	1640					
40	25100	16800	12600	10100	0300	4600	4020	3220	2680					
			12.000	10100	0380	7180	6280	5030	4190					

AAR2205 Copyright: National University of Science and Technology, 2016/17

Page 5 of 6

	ohia	Alla	7.7	- And	31912		1980	10.44	1000	-	10.44		380	864		100	
	Elastic M	Atis	8-8	cut ¹	1555 1404 1248 1120 949.0	1322	1101	775.6	1005	101 101 101 101 101 101 101 101 101 101	670.0	761.4	611.1 550.0 470.3	414.8 2005	200	107.6 107.6	COLUMN STREET
TTES	Oymeion	Asic	ĩ	EU.	3222	3.81	3,322 3,245 3,516	2.92	323	1975 1975 1975 1975	2.60	3.74	2.68	183		2.18 2.18 2.01	A VINCENSE
PROPER	Radius of	Axis	I	5	100000 100000 100000	0.000	10.7 10.7 10.7	10.0	8021	14.8 14.8 14.8	523	128	12.6 12.4 12.3	222	333	583	Contraction of the
UN AND	tenia Ra	Axis	I	em*	1082 863 794 794 794	1448	1047 908 788	373	947 914 085	1278 1026 888 730	333	988 825 691	438 310 310	189	828	232	- Martin
MENSIO	nent of faers		Met	, interest	32058 26731 265342 22613 10034	23981 21387 18928 16388	23811 21069 18283	10863	18817 18817 16488	17002 14018 12340 10578	90.08	10119 8586 7368	8137 0876 0142	5752 4885 3885 3886	5151 4124 3885		a contract of the
IIC	Moment of facrie	Axis s-	Gross	ame	36180 32380 228522 25564	27279 24279 21520 18576	28838 23798 20819	15603	21276 18632 16046	10463 10038 14118 12082	10054	11586 9924 8500	0405	6482 6410 6410 4201	6846 5544 6427	405 100 100 100 100 100 100 100 100 100 1	Per-0611
DIMENSION		Serial		uta	457 × 162	496 x 178	406 × 152	406 × 140	381 × 182	141 × 121	356.2 127	305 × 105	221 - 908	905 × 102	194 - 144	Abr. 102	The second second

Page 6 of 6

AAR2205 Copyright: National University of Science and Technology, 2016/17

AAR2205 Copyright: National University of Science and Technology, 2016/17