

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF THE BUILT ENVIRONMENT

DEPARTMENT OF QUANTITY SURVEYING

ENGINEERING SURVEYING

AQS 1208

Supplementary Examination Paper

July 2015

This examination paper consists of 5 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Mr A. Shanji

INSTRUCTIONS

1. Answer any four (4) questions

2. Each question carries 25 marks

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
5.	25

QUESTION ONE

a) Briefly explain the methods of taping used in Surveying

[4]

- b) Explain what is meant by the term taping and briefly discuss why steel tapes are standardised. [6]
- c) Calculate the Mean Sea Level distance of the line AB measured with a 100m steel tape using the following data.

Line	Distance	Field	Field	Slope	Bays
	Measured	Temperature ⁰ C	Tension (N)	Angle (d.m.s)	
AB	99.978	29 ⁰ C	85N	2 ⁰ 45' 00''	3

Tape data

Standard temperature	20 ⁰ C
Standard Tension	70N
Mass of tape per unit length	0.012kg/m
Young's modulus of elasticity	$2.11 \times 10^6 \text{kg/m}^2$
Coefficient of linear expansion	$1.7 \times 10^{-5} / {}^{0}C$
Cross sectional area of tape	7mm ²
Mean height of line AB	1900m
Mean Radius of Earth	6361.1km
1kgF	9.81N

QUESTION TWO

- a) With the aid of neatly sketched diagrams, explain how you would check a level for adjustment using the classical **two peg test**. [10]
- b) The following consecutive readings were taken with a level on a continuously sloping ground at a common interval of 20m. The last station has an elevation of 155.272m. Rule out a level book page and enter the readings.
 - 0.420; 1.115; 2.265; 2.900; (3.615; 0.535); 1.470; 2.815; 3.505; (4.445; 0.605); 1.925 and 2.885

Cal	lcul	late	•
∵ u	ıvuı	ucc	٠

i) The reduced level of the points by the Rise and Fall Methodii) The gradient of the line joining the first and the last points.[5]

QUESTION THREE

- a) A stockpile of 11690 tonnes of quarry is to be established on a level surface by end tipping from a conveyor belt situated 20m vertically above forming a stockpile of regular cone with an angle of repose of 37⁰. Calculate the height of the conical stockpile accepting that 1m³ of broken ore is 1.67 tonnes. [15]
- b) A tract of land has three straight boundaries AB; BC; and CD. The fourth diagram boundary DA is irregular. The measured lengths are: AB = 135m; BC = 191m; CD = 126m and BD = 255m.

The offsets were measured outside the boundary DA to the irregular boundary at a regular interval of 30m from d, are as below.

Distance	0.0	30	60	90	120	150	180
From D (m)							
Offset (m)	0.0	3.7	4.9	4.2	2.8	3.6	0.0

Determine the area of the tract of land. [10]

QUESTION FOUR

a) What do you understand by the following terms as they are used in compass Survey?

i)	Quadrantal bearing	[2]
ii)	Meridian Convergence	[2]
iii)	Magnetic declination	[2]
iv)	Isogonic lines	[2]
v)	Local attraction	[2]

Page 3 of 5

b) The fore bearings and back bearings of a closed loop traverse ABCDA were recorded as below.

Line	Fore Bearing	Back bearing	
	Degrees, minutes	Degrees, minutes	
AB	77 30	259 10	
ВС	110 30	289 30	
CD	228 00	48 00	
DA	309 50	129 10	

Determine which of the stations are affected by local attraction and compute the values of the corrected bearings. [15]

QUESTION FIVE

a) A T16 theodolite was used to carry out a tacheometry exercise and there was need to determine its stadia constants K and C. Evaluate the stadia constants using the observations below

Distance	Upper	Middle	Lower
(m)	Stadia (m)	Stadia (m)	Stadia (m)
40	1.620	1.420	1.220
90	1.871	1.421	0.971

[10]

b) The following data was obtained by stadia tacheometry , vertical angle was - $6^0\,37^{'}$, rod reading of 2.72m was also booked , along with the height of instrument 1.72m and a rod interval of 0.241.

Page **4** of **5**

Calculate the following:

i)	Horizontal distance from staff to instrument	[5]
ii)	Height difference between instrument and staff position	[5]
iii)	Elevation of the staff position given the instrument position level as 185.16m	
		[5]