NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF ARCHITECTURE AND QUANITY SURVEYING BACHELOR OF QUANTITY SURVEYING (HONOURS) DEGREE PART ONE SUPPLEMENTARY EXAMINATIONS - JULY 2006

ENGINEERING SURVEYING - AQS 1208

TIME: 3 HOURS 100

INSTRUCTIONS:
Answer any four questions.

QUESTION 1

a) Define surveying
b) List the classes of survey that you have learnt and what is the difference is between them.
c) A 30m tape was used for measuring the side of a triangle and the measured lengths were $68 \mathrm{~m}, 51 \mathrm{~m}$ and 43 m . It was later found that the tape had the first 2 metres missing. Calculate the correct area of the triangle.
d) A circle of radius 10 cm was planimetered and a reading of 1,130 revolutions was recorded. An irregular figure was traced by the same planimeter and a reading of 4,732 revolutions was obtained. What is the area of the irregular figure?

QUESTION 2

Calculate the total area of a piece of land shown in fig. 2, using any two methods you learnt for the irregular bounded area.
(25 marks)

QUESTION 3

a) Reduce the following levels by the rise and fall method and calculate the gradient from B.M.A to the last point given that the horizontal distance is 90 m .

B.S	I.S.	F.S.	R.L.	Remarks
1,749			1004,511	B.M.A
	1,299			Road
	1,377			Road
	1,374			Road
	1,412			Road
	1,449		Road	
	1,487			Road
	1,524			Road
		1,999		Bridge

b) Reduce the following levels by the height of collimation method.
(13 marks)

B.S.	I.S.	F.S.	R.L.	Remarks
0,550			1035,030	I.B.M.I.
	0,480			A
	0,420			B
	0,500		C	
	1,130			D
	1,570		E	
	1,650		F	
	1,820		G	
	2,490		H	
	2,500		I	
	2,600			J
	2,610		K	
	3,470		L	
	2,780			M
	3,400			N
	2,580			O
	2,560			P
				Q

QUESTION 4

Describe the Zimbabwean Survey coordinate system.
(25 marks)

QUESTION 5

Point L was surveyed by sighting beacons A, B and M as shown in fig. 5.
Given
Mean observed horizontal angles

MLA $=145^{\circ} 00^{\prime} 00^{\prime \prime}$
ALB $=85^{\circ} 00^{\prime} 00^{\prime \prime}$
$B L M=130^{\circ} 00^{\prime} 00^{\prime \prime}$
Coordinates (m)
A $+450,000+150,000$
B $+400,000-120,000$
$\mathrm{M}+21,500 \quad+7,910$
Calculate the coordinates of L.

QUESTION 6

For the triangulation network shown in fig. 6, calculate the coordinates of C and D given.
Horizontal angles

$$
\begin{aligned}
& \mathrm{APC}=53^{0} 41^{\prime} 55^{\prime \prime} \\
& \mathrm{PAC}=47^{0} 21^{\prime} 05^{\prime \prime} \\
& \mathrm{CPD}=65^{\circ} 31^{\prime} 30^{\prime \prime} \\
& \mathrm{CDP}=60^{0} 15^{\prime} 20^{\prime \prime}
\end{aligned}
$$

Coordinates(m)
A +9844,180 +16375,000
P +9392,800 +18952,020

END OF EXAMINATION

