NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF BUILT ENVIRONMENT

DEPARTMENT OF QUANTITY SURVEYING

PART I SECOND SEMESTER EXAMINATIONS – JUNE 2010

ENGINEERING SURVEYING – AQS1208

Time: 3 Hours

Total Marks: 100

(2 marks)

Instructions

Answer ANY Five Questions. All Questions Carry equal marks.

Carry out all necessary checks.

Untidy work will be penalised.

Diagrams drawn should be labelled.

Requirements

A non- programable calculator.

QUESTION ONE

- a) A properly adjusting tilting level was set up at a point P and the following consecutive readings 0, 663m; 0,841m and -0,939m were taken on a staff positioned at points A, B and C respectively. The level then moved to a point Q and furtherreadings at C and D were as follows; 1,198m and 1,100m respectively. Reduce and check the levels using the height of collimation method. Reduced level of A was given as +94,115m.
- b) What are the advantages and disadvantages that are associated with both the Rise and Fall and height of collimation methods? (3 marks)
- c) What is reciprocal levelling?

QUESTION TWO

a) Define the following terms as used in compass survey.

i)	Isogonal lines	(3 marks)
ii)	Agonic lines	(3 marks)
iii)	Magnetic meridian	(4 marks)

b) Eliminate the effect of local attraction from the following compass bearing. Show the adjustment and the adjusted value.

AB=N30 ⁰ 00'E	BC=S40 ⁰ 00'E	CD=S45 ⁰ 00'W
BA=S30 ⁰ 00'W	CB=N45 ⁰ 00'W	DC=N55 ⁰ 00'E
DA=N55 ⁰ 00'W	AD=S60 ⁰ 00'E	(10 marks)

QUESTION THREE

A levelling exercise was carried along the track in an underground haulage. It has been decided to regrade the track on an even grade from station 1 to station 8. Thereafter, the haulage is to be advanced on a grade of 0, 50%. The required grade elevation at station 1 is 937,480m ie 1,00m above the existing track. Calculate the height above the existing track, required grade to be placed to regrade the track between station 1 and 8 and also at 9 to suit the new grade.

(NB Calculate the cut and fill)

QUESTION FOUR

a) What are the responsibilities of an Engineering Surveyor on a Construction scheme?

(10 marks)

 b) Describe in detail methods of controlling verticality during construction of either multi -storey building on a vertical shaft. (10 marks)

QUESTION FIVE

A resection was carried out at a point P and the following information extracted for

observations to trigs A, B and C.

Coordinates

A -85 150,86	+ 2152 089,38	θ=65 ⁰ 34' 04"
B -89 538,72	+2146 517,84	α=132 ⁰ 51' 20"

(20 marks)

C -88 401,35	+2157 031,46	β=161 ⁰ 34' 36"
--------------	--------------	----------------------------

Resect the coordinates of P, by the Barycentric method. (20 marks)

QUESTION SIX

- a) Given coordinates in metres
- A +212 640,515 +7 646,103
- B +212 587,339 +7 899,902

Calculate the distance and direction A to B. (10 marks)

b) In a tape offset survey the following offsets were taken from a fence to a survey line.

Chainage m	0	20	40	60	80	100	120	410	160	180
Offset m	0	5,49	9,14	8,03	10,17	13,00	8,73	4,27	1,83	0

Find the area (hectares), between the fence and the survey line. Use Simpson's rule. (10 marks)

END OF EXAMINATION