NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF ARCHITECTURE \& QUANTITY SURVEYING BACHELOR OF QUANTITY SURVEYING [HONOURS] DEGREE PART II FIRST SEMESTER EXAMINATION - DECEMBER 2004

ENGINEERING SURVEYING I - AQS 2102

TIME: 3 HOURS
TOTAL MARKS: 100

INSTRUCTION
Answer any FOUR Questions.
All Questions carry equal marks.

QUESTION 1

a) The area of a square field was found to be $33124 \mathrm{~m}^{2}$ when measured with a 60 m steel tape at a temperature of $12^{\circ} \mathrm{C}$. If this steel tape had a coefficient of expansion of 0,000012 and was standardised at $20^{\circ} \mathrm{C}$, what is the correct area?
b) A planimeter used to trace over a circle of radius 8 cm gave the following reading 6,324 revolutions. Using the same setting the planimeter was used to measure an area on a plan drawn to a scale of 1:200 and gave a reading of 8,713 revolutions. Calculate this area in square metres.
c) Calculate the volume, in cubic metres, of water contained in a dam, whose ground contours are shown in fig. (1) drawn to a scale of 1:100. A planimeter set to read $60 \mathrm{~cm}^{2}$ on a scale of 1:200 was used to planimeter each area enclosed by a contour and the following readings were obtained:

Contour
112 m
326,4
109m
282,2
106m
212,1
103m
150,0
100m
100,0

Calculate the volume using any two methods you learnt.

QUESTION 2

a) List three advantages and two disadvantages of compass surveying.
b) Eliminate the effects of local attraction from the following compass bearings. Tabulate your work and show the amount of adjustment and the adjusted angle.

AE	148^{0}	00^{\prime}
AB	78^{0}	30^{\prime}
BA	258^{0}	30^{\prime}
BC	90^{0}	30^{\prime}
CB	266^{0}	30^{\prime}
CD	173^{0}	00^{\prime}
DC	353^{0}	00^{\prime}
DE	161^{0}	00^{\prime}
ED	342^{0}	00^{\prime}
EA	325^{0}	00^{\prime}

c) The following compass Bearings were taken in the Matopo when magnetic declination was N $8^{0} 50^{\prime} \mathrm{W}$, calculate the correct Bearings:

AB	57^{0}	06^{\prime}
BA	239^{0}	36^{\prime}
BC	141^{0}	48^{\prime}
CB	329^{0}	54^{\prime}
CD	257^{0}	00^{\prime}
DC	72^{0}	48^{\prime}
DE	344^{0}	30^{\prime}
ED	164^{0}	30^{\prime}
EF	175^{0}	30^{\prime}
FE	357^{0}	00^{\prime}

d) Write the following whole circle compass bearings as quadrant bearings

AB	246^{0}	30^{\prime}
BC	142^{0}	00^{\prime}
CD	320^{0}	00^{\prime}
DE	175^{0}	30^{\prime}
EF	66^{0}	30^{\prime}

QUESTION 3

A building site is to be excavated on a hill sloping at 10° to the horizontal. If the horizontal base of the site is to be 40 m by 40 m and the side of the excavation are to slope at 1 m vertical to $1,5 \mathrm{~m}$ horizontal, calculate the volume of earth to be excavated.
(25 marks)

QUESTION 4

STATION	B.S.	I.S.	F.S.	R.L	HORIZONTAL DISTANCE FROM BM82 (m)
B.M. 82	2,383			$+328,452$	-
Peg 1	1,730		3,151		27
Peg 2	1,134		1,360		65
Peg 3	1,980		1,511		110
Peg 4		1,321		153	
Peg 5	2,387		1,256		193
Peg 6		1,925		227	
Peg 7		2,561			269
Peg 8	1,052		1,865		300
Bridge 1		2,747			314
Bridge 2		2,819		364	
Peg 9	1,183		0,845		380
Bridge 3	2,842		2,595		414
Peg 10		1,408			450
Peg 11	1,200		1,638		475
Peg 12	2,374		1,560		500
B.M. 127			0,733	$+329,709$	514,320

The levelling notes above are of a levelling traverse starting from B.M. 82 and closing on B.M. 127 as a check. The readings were taken along the centre-line of a road, at chainages (distances) shown. This section of the road is to be regarded as follows:
(i) On an even up-grade from B.M. 82 to allow a clearance of 2,700m under bridge 1 ,
(ii) Thereafter on an even down-grade from bridge 1 to B.M. 127. Calculate using the collimation (H.O.C) method only;
(a) the required grades as in (i) and (ii) above
(b) the amount of cut or fill required at each point.

No cut or fill is to be done at B.M.82.
(25 marks)

QUESTION 5

It is required to lay a pipe in a trench in a straight line from A to H . From the levelling notes below, calculate the cut required at each of the survey stations in order that the bottom of the trench will be on an even grade of $1: 120$ down from A to H. The cut at A is to be $3,000 \mathrm{~m}$. Use the rise and fall method.
(25 marks)

STATION	B.S.	I.S.	F.S.	R.L	HORIZONTAL DISTANCE FROM P (m)
A	3,250				
B		3,200		1412,00	-
C		2,160			60
D	1,630		3,870		108
E		2,540		168	
F	3,630		2,290		288
G		2,910		396	
H			4,360		498
				600	

QUESTION 6

a) A straight section of a proposed road having a formation width of $7,30 \mathrm{~m}$ is to be constructed as a cutting having sides slopes of 1 in 2 . At the particular cross section shown in fig. 6 the depth to formation level at the centreline is $4,88 \mathrm{~m}$. Calculate the area of this cross-section.

An access road to a mine is to be constructed to rise at 1 in 20 across a hillside having a maximum slope of 1 in 10 . The road is to have a formation width of $4,5 \mathrm{~m}$ and the volumes of cut and fill are to be equalised. Calculate the width of the cutting and the volume of excavation in 30 m of road.
Side slopes are to batter at 1 in 1 in cut and 1 in 2 in fill.

END OF EXAMINATION

