NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF ARCHITECTURE \& QUANTITY SURVEYING BACHELOR OF QUANTITY SURVEYING [HONOURS] DEGREE PART II FIRST SEMESTER SUPPLEMENTARY EXAMINATIONS - JULY 2005
 ENGINEERING SURVEYING I - AQS 2102

TIME: 3 HOURS
TOTAL MARKS: 100

INSTRUCTION
Answer any FOUR Questions.
Carry Out all necessary checks

QUESTION 1

a) Define Surveying
(5 marks)
b) List the classes of survey that you have learnt and give a brief description of each class, giving examples of types of work carried in each class (give two examples per class). (10 marks)
c) How would you set up a right angle using a prism square?
d) A planimeter was used to obtain the area of a circle 20 cm in diameter. If the planimeter reading obtained was 5,236 revolutions, what was the setting in square centimetres of the planimeter?

QUESTION 2

a) What do you understand by standardisation of tapes and why is it important?
b) What is the difference between a map and a plan?
c) It is required to set out a base line exactly 650,000 metres in length, using a 60 m steel tape having a coefficient of expansion/contraction of $0,000012 /^{\circ} \mathrm{C}$, which was standardised at $20^{\circ} \mathrm{C}$. What measurement must be made at a temperature of $12^{\circ} \mathrm{C}$ to set out the baseline? (5 marks)
d) A base line was measured with a tape and found to be $327,250 \mathrm{~m}$ long. It was subsequently found that the tape used was incorrect. What would the correct distance be if the tape was:
(i) 1% too long (3 marks)
(ii) $0,5 \%$ too short (3 marks)
e) List five precautions under care and maintenance of steel tapes that you have learnt. (5 marks)

QUESTION 3

a) Fig. 3a shows a contoured plan of an area in which it is proposed to build a reservoir. A planimeter was used to measure the plan areas contained between the proposed position of the dam wall and several contour lines and the results obtained are shown below. The proposed
mean water level of the reservoir is 257 m and the volume below the 230 m contour can be neglected. Calculate the volume of the reservoir using any two methods you learnt.

Results

Planimeter area $\left(\mathrm{m}^{2}\right)$	$\underline{\text { Level (m) }}$
85312,500	257
77937,300	255
69375,000	250
47587,500	245
7193,750	240
1100,000	235
693,750	230

b) From two points opposite a conical rock dump 30m high, and in a straight line at the base of the dump two men observed the angle of elevation to be 35° and 40°. How for apart are the men?
c) Define scale of a plan. (3 marks)

QUESTION 4

a) Reduce the following observations taken along

B.S.	I.S.	F.S.	R.L	REMARKS B.M.A
1,067			1000,000	
	1,981			IS_{1}
	2,591			IS_{2}
0.610		5,029		CP_{1}
	3,048			IS_{3}
	4,877			IS_{4}
5,029	2,438			IS_{1}
	3,200	0,305		CP_{2}
	2,286			IS_{6}
		1,372		IS_{7}
			B.M.B	

b) Reduce the following levels by the height of collimation method.

B.S.	I.S.	F.S.	R.L	REMARKS
1,740			1522,730	B.M.I
	1,560			Stn. A
2,990	2,720			Stn. B
		3,260		Stn. C
	2,730		Stn. D	
0,78	3,450	4,460		Stn. E
			Stn. F	
	2,120		Stn. G	
	2,530		Stn. H	
	3,210	4,690		Stn. J
			B.M.I	

QUESTION 5

A road is to be constructed on an even grade from station A to station J . The existing ground elevations at stations A and J will remain unchanged.
Complete the levelling observations from the road below using the rise and fall method.
Calculate the even grade from station A to J and determine the amount of cut or fill at each station.
(25 marks)

STN.	B.S.	I.S.	F.S.	R.L	HORIZONTAL DISTANCE BETWEEN STATIONS (m)
A	2,630			1270,480	-
B		2,290			90
C		2,480			96
D		1,340			104
E	2,180		0,760		92
F	1,830				112
G	1,630				102
H	0,590				92
J			0,150		92

QUESTION 6

Calculate the total area of a small farm shown in fig. 6, using any two methods you have learnt for the irregular bounded area.
(25 marks)
END OF EXAMINATION
\square

