NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF ARCHITECTURE \& QUANTITY SURVEYING BACHELOR OF QUANTITY SURVEYING [HONOURS] DEGREE PART II FIRST SEMESTER EXAMINATION - DECEMBER 2005

ENGINEERING SURVEYING I - AQS 2102

TIME: 3 HOURS
TOTAL MARKS: 100

INSTRUCTION
Answer any FOUR Questions.
All Questions carry equal marks.

QUESTION 1

a) A planimeter with a setting of $70 \mathrm{~cm}^{2}$ with was used to obtain the area of an irregular figure drawn on a plan to a scale of 1:500. If the reading obtained was 3,216 revolutions. Calculate the area of the irregular figure.
b) A planimeter with an unkown setting was used to find the areas of an irregular figure drawn on a plan to a scale of 1:1000 and reading obtained was 4,732 revolutions. Using the same planimeter with the same unknown setting a reading of 1,130 revolutions was obtained when a circle of radius 10 cm was planimetered. Calculate the area of the irregular figure.
(7 marks)
c) A 60 m metallic tape was used to mark the straight of 100 metres on an athletic track. It was afterwards found that the tape used had stretched $0,267 \mathrm{~m}$. By what amount and in which direction relative to the staring point must the winning post (finishing post) be moved so that the correct distance will be 100 cm from the start?
(5 marks)
d) A triangular piece of ground was measured with a 30m tape and the sides were found to be $68 \mathrm{~m}, 51 \mathrm{~m}$ and 43 m . On checking the tape used, it was found that the first 2 m was missing. Calculate the true area of the triangle.

QUESTION 2

Calculate the total area of a plot of land shown in fig. 2. Use any two methods for the irregular bounded area.

QUESTION 3

The following levelling notes below were taken along a line of a proposed road.

B.S.	I.S.	F.S.	R.L.	HORIZONTAL DISTANCES BTWN STATIONS (m)	REMARKS
3,072			1031,356	-	B.M.A
	1,389			0	St.
2,556	0,441			30	St. 2
	1,569	0,123		60	St.3
3,792		1,011		90	St.4
		1,761		120	St.5

Reduce the levelling notes and determine the dept of cutting and filling necessary out each station to form an even gradient rising at +1 in 20, starting at a level of 1031,500m above datum at station 1. Use the rise and fall method.

QUESTION 4

a) Calculate the cross-sectional area for an embankment shown in fig. 4, which has got the following measurements:

Formation width	AB $=16 \mathrm{~m}$
Height at centre	$h=4 \mathrm{~m}$
Side Slope	$1: 2$
Ground Slope	$1: 12$

(10 marks)
b) Calculate the volume of water to be contained in a dam shown in fig. 4a using any two methods you learnt.

Given
Planimeter area (m^{2}) Contour Level (m)
$13650 \quad 257$
$12470 \quad 255$
$11100 \quad 250$
$7614 \quad 245$
1151240
176235
111230
The proposed mean water level of the dam is the 257 m contour and the volume below the 230 m contour can be neglected.

QUESTION 5

a) The magnetic declination in Chiredzi was $10^{\circ} \mathrm{E}$. Given the following compass observations taken in Chiredzi;

AB	175^{0}	30^{\prime}
BC	246^{0}	30^{\prime}
CD	142^{0}	00^{\prime}
DE	357^{0}	00^{\prime}
EF	96^{0}	00^{\prime}

Calculate the true compass bearings.
b) Write the following quadrant compass bearings as whole circle compass bearings:
(i) $\mathrm{N} 10^{0} \mathrm{~W}$
(ii) $\mathrm{S} 50^{0} \mathrm{E}$
(iii) $\mathrm{S} 40^{0} \mathrm{~W}$
(iv) $\mathrm{N} 50^{\circ} \mathrm{E}$
(v) $\mathrm{N} 45^{0} \mathrm{~W}$
c) Eliminate the effects of local attraction from the following compass bearings tabulate your work and show the adjustment and the adjusted values.

Line	Observed bearing	
AE	137^{0}	00^{\prime}
AB	60^{0}	30^{\prime}
BA	230^{0}	15^{\prime}
BC	358^{0}	00^{\prime}
CB	182^{0}	00^{\prime}
CD	148^{0}	15^{\prime}
DC	328^{0}	15^{\prime}
DE	219^{0}	00^{\prime}
ED	44^{0}	30^{\prime}
EA	316^{0}	15^{\prime}

QUESTION 6

The following sets of readings were taken to test a level.
Set 1
Level set up midway between two pegs A and B 60m apart horizontally.
Reading on the staff when held vertically at $A=1,508 \mathrm{~m}$

Reading on the staff when held vertically at $B=1,384 \mathrm{~m}$
Set 2
Level set up on the line AB extended, 6 m from B horizontally.
Reading on the staff when held vertically at $\mathrm{A}=1,355 \mathrm{~m}$
Reading on the staff when held vertically at $B=1,271 \mathrm{~m}$
Calculate
(i) the collimation error in the level per 60m of sight. (10 marks)
(ii) Describe the procedure for removing the error from the level if it is
a) a tilting level
(8 marks)
b) an automatic level

END OF EXAMINATION

