NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF ARCHITECTURE AND QUANTITY SURVEYING BACHELOR OF QUANTITY SURVEYING (HONOURS) DEGREE PART II SECOND SEMESTER EXAMINATIONS - MAY 2005

ENGINEERING SURVEYING II - AQS 2204

TIME: 3 Hours
TOTAL MARKS: 100
INSTRUCTIONS:
Answer any four Questions.

QUESTION 1

Calculate the coordinates of point F in the triangulation net-work shown in fig. 1, given the following information:

Information
Horizontal angles
$\mathrm{ABC}=48^{0} 51^{0} 40^{\prime \prime}$
$\mathrm{BAC}=62^{0} 13^{\prime} 00^{\prime \prime}$
DCE $=35^{0} 42^{\prime} 20^{\prime \prime}$
$\mathrm{CDE}=91^{0} 01^{\prime} 50^{\prime \prime}$
FEA $=45^{0} 03^{\prime} 30^{\prime \prime}$
FAE $=61^{0} 39^{\prime} 10^{\prime \prime}$
Coordinates (m)
A + 600,584 +615,620
B $+744,236 \quad+502,487$
D $+769,266 \quad+814,307$

QUESTION 2

Two curve centres P and Q (see fig. 2) have to be joined by a straight length of crack T_{1} T_{2} tangential to both curves.

Given

Coordinates		Radius of curve (m)
$\mathrm{P}+347,910$	$-279,370$	600
$\mathrm{Q}+441,330$	$-352,010$	400

Calculate

(i) the coordinates of T_{1} and T_{2}
(ii) the distance T_{1} and T_{2} and bearing $\mathrm{T}_{1}-\mathrm{T}_{2}$

QUESTION 3

A straight tunnel is to be driven at a constant slope on the line joining two stations, A and D which are on opposite sides of a hill (see fig. 3). An initial survey is required to establish the positions of the proposed tunnel entrances and to enable this to be done, three additional points B, C and E are established on the hill. A closed-loop traverse A B C D E A is run and the following observations were obtained.

Observations

Bearing A-B $=327^{0} 18^{\prime} 18^{\prime \prime}$
Coordinates of $\mathrm{P}+500,000+500,000$

Clockwise angle	Observed Value	Horizontal Distances (m)
ABC	$93^{0} 17^{\prime} 45^{\prime \prime}$	AB $=119,450$
BCD	$82^{0} 43^{\prime} 19^{\prime \prime}$	$\mathrm{BC}=588,310$
CDE	$141^{0} 18^{\prime} 47^{\prime \prime}$	$C D=123,280$
DEA	$93^{0} 18^{\prime} 44^{\prime \prime}$	DE $=391,110$
EAB	$129^{0} 21^{\prime} 35^{\prime \prime}$	$\mathrm{EA}=405,580$

Calculate the adjusted coordinates of the closed-loops traverse (adjusted by Bowditch method).
(25 marks)

QUESTION 4

Point C was surveyed by resection. (see fig. 4). The following information was obtained:

Observed horizontal angles
PCB $=142^{0} 01^{\prime} 55^{\prime \prime}$
$\mathrm{BCA}=139^{0} 00^{\prime} 55^{\prime \prime}$
$\mathrm{PCA}=78^{0} 56^{\prime} 55^{\prime \prime}$
Given
Coordinates (m)
$\mathrm{P}+9392,800 \quad+18952,020$
$\mathrm{A}+9844,180 \quad+16375,000$
$\mathrm{B}+13365,170 \quad+18536,060$
Calculate the provisional coordinates of point C.

QUESTION 5

Survey stations M, N and O form a right-angled triangle at station M . (See fig. 5). A theodolite whose constants are $\mathrm{s}=100$ (multiplying constant) and $\mathrm{k}=0$ (additive constant) was used to determine the following tachometric data.

Instrument Station M, Height of instrument $=1,410 \mathrm{~m}$

TARGET STATION	VERTICAL ANGLE	STADIA	READING	
N	$95^{\circ} 40^{\prime}$	UPPER	MID	LOWER
O	$82^{\circ} 30^{\prime}$	1,830	1,500	1,170

Calculate

a) horizontal lengths MN, MO and NO
b) reduced levels of N and O given that the reduced level of $\mathrm{M}=1129,600 \mathrm{~m}$ (10 marks)
c) If points M, N and O were lying in a plane, calculate the area of the triangle MNO.
(6 marks)

QUESTION 6

The center point triangle shown in fig. 6 is to be used as a control network on a construction site. Adjust the measured horizontal angles given below for geometrical consistency using any method you learnt.

Angle	Observed Value
1	$26^{0} 10^{\prime} 48^{\prime \prime}$
2	$29^{0} 04^{\prime} 37^{\prime \prime}$
3	$28^{0} 23^{\prime} 12^{\prime \prime}$
4	$32^{0} 57^{\prime} 52^{\prime \prime}$
5	$35^{0} 46^{\prime} 10^{\prime \prime}$
6	$27^{0} 37^{\prime} 16^{\prime \prime}$
7	$126^{0} 11^{\prime} 59^{\prime \prime}$
8	$122^{0} 32^{\prime} 02^{\prime \prime}$
9	$111^{0} 15^{\prime} 52^{\prime \prime}$

END OF EXAMINATION

