NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF ARCHITECTURE AND QUANTITY SURVEYING BACHELOR OF QUANTITY SURVEYING (HONOURS) DEGREE PART II SECOND SEMESTER EXAMINATIONS – MAY 2005

ENGINEERING SURVEYING II – AQS 2204

TIME: 3 Hours

TOTAL MARKS: 100

INSTRUCTIONS:

Answer any four Questions.

QUESTION 1

Calculate the coordinates of point F in the triangulation net-work shown in fig. 1, given the following information:

Information

Horizontal angles

ABC	=	$48^051^040^{\prime\prime}$
BAC	=	$62^{0}13^{\prime}00^{\prime\prime}$
DCE	=	$35^{\circ} \ 42^{\prime} 20^{\prime\prime}$
CDE	=	91 ⁰ 01′50′′′
FEA	=	45° 03′ 30″
FAE	=	61 [°] 39′ 10″

Coordinates (m)

A + 600,584	+615,620
B + 744,236	+502,487
D + 769,266	+814,307

(25 marks)

QUESTION 2

Two curve centres P and Q (see fig. 2) have to be joined by a straight length of crack T_1 T_2 tangential to both curves.

<u>Given</u>		
Coordinates		Radius of curve (m)
P+347,910	-279,370	600
Q + 441,330	-352,010	400

Calculate (i) the coordinates of T_1 and T_2 (ii) the distance T_1 and T_2 and bearing $T_1 - T_2$

(25 marks)

QUESTION 3

A straight tunnel is to be driven at a constant slope on the line joining two stations, A and D which are on opposite sides of a hill (see fig. 3). An initial survey is required to establish the positions of the proposed tunnel entrances and to enable this to be done, three additional points B, C and E are established on the hill. A closed-loop traverse A B C D E A is run and the following observations were obtained.

<u>Observations</u> Bearing A-B = $327^{0} 18^{7} 18^{77}$ Coordinates of P +500,000 +500,000

Clockwise angle	Observed Value	Horizontal Distances (m)
ABC	93 ⁰ 17 [′] 45 ^{′′′}	AB = 119,450
BCD	$82^{0}43^{\prime}19^{\prime\prime}$	BC = 588,310
CDE	$141^{0} 18^{\prime} 47^{\prime\prime}$	CD = 123,280
DEA	93 ⁰ 18 [/] 44 ^{//}	DE = 391,110
EAB	$129^{0}21^{\prime}35^{\prime\prime}$	EA = 405,580

Calculate the adjusted coordinates of the closed-loops traverse (adjusted by Bowditch method). (25 marks)

QUESTION 4

Point C was surveyed by resection. (see fig. 4). The following information was obtained:

Observed horizontal angles

 $PCB = 142^{\circ} \ 01' 55''$ $BCA = 139^{\circ} \ 00' 55''$ $PCA = 78^{\circ} \ 56' \ 55''$ $\frac{Given}{P + 9392,800} + 18952,020$ A + 9844,180 + 16375,000 B + 13365,170 + 18536,060Calculate the provisional coordinates of point C. (25 marks)

QUESTION 5

Survey stations M, N and O form a right-angled triangle at station M. (See fig. 5). A theodolite whose constants are s = 100 (multiplying constant) and k = 0 (additive constant) was used to determine the following tachometric data.

TARGET VERTICAL **STADIA** READING STATION ANGLE UPPER MID LOWER $95^{\circ}40^{\prime}$ Ν 1,830 1,500 1,170 $82^{0} \, 30^{\prime}$ 2,410 0 2,810 2,610

Calculate

a) horizontal lengths MN, MO and NO

Instrument Station M, Height of instrument = 1,410m

(9 marks)

b) reduced levels of N and O given that the reduced level of M = 1129,600m (10 marks)

c) If points M, N and O were lying in a plane, calculate the area of the triangle MNO.

(6 marks)

QUESTION 6

The center point triangle shown in fig. 6 is to be used as a control network on a construction site. Adjust the measured horizontal angles given below for geometrical consistency using any method you learnt.

Angle	Observed Value
1 2 3 4 5 6 7 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9	$111^{0}15'52''$
	END OF EXAMINATION