NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF ARCHITECTURE AND QUANTITY SURVEYING BACHELOR OF QUANTITY SURVEYING (HONOURS) DEGREE PART II SECOND SEMESTER EXAMINATIONS - MAY 2006

ENGINEERING SURVEYING II - AQS 2204
TIME: 3 Hours
TOTAL MARKS: 100
INSTRUCTIONS:
Answer any four Questions.

QUESTION 1

Two roads AB and CD are to be joined by a curve CA of radius 40 m as shown in fig. 1.
B and C are points on the centre of the roads having the same reduced levels.
Given
Bearing of road C-D $=281^{\circ} 12^{\prime} 00^{\prime \prime}$
Coordinates (m)
$\mathrm{B}+6487,270 \quad+1561,910$
C $+6539,580 \quad+1476,520$
Calculate the coordinates of A .

QUESTION 2

Fig. 2 shows a triangulation network at a construction site.

Given

Coordinates (m)
$\mathrm{U}+600,584 \quad+615,620$
$\mathrm{V}+744,236 \quad+502,487$
$X+769,266 \quad+814,307$
Measured horizontal angles
WUV $=43^{0} 03^{\prime} 30^{\prime \prime}$
UVW $=61^{0} 39^{\prime} 10^{\prime \prime}$

$$
\begin{aligned}
& \hline \text { YWX }=35^{0} 42^{\prime} 20^{\prime \prime \prime} \\
& \text { WXY }=91^{0} 01^{\prime} 50^{\prime \prime}
\end{aligned}
$$

Calculate the coordinates of Y.

QUESTION 3

The centre point pentagon PQRST with centre station C as shown in fig. 3, is to be used as a horizontal control network. Using the observed angles, adjust the figure for geometrical consistency using any method you learnt.

Angle	Observed Value
1	$50^{0} 04^{\prime} 02^{\prime \prime}$
2	$51^{0} 11^{\prime} 17^{\prime \prime}$
3	$51^{0} 28^{\prime} 57^{\prime \prime}$
4	$50^{0} 20^{\prime} 48^{\prime \prime}$
5	$63^{0} 35^{\prime} 47^{\prime \prime}$
6	$69^{0} 05^{\prime} 54^{\prime \prime}$
7	$46^{0} 45^{\prime} 11^{\prime \prime}$
8	$53^{0} 14^{\prime} 47^{\prime \prime}$
9	$57^{0} 09^{\prime} 34^{\prime \prime}$
10	$47^{0} 04^{\prime} 09^{\prime \prime}$
11	$82^{0} 51^{\prime} 55^{\prime \prime}$
12	$77^{0} 19^{\prime} 52^{\prime \prime}$
13	$66^{0} 03^{\prime} 28^{\prime \prime}$
14	$64^{0} 08^{\prime} 58^{\prime \prime}$
15	$69^{0} 35^{\prime} 42^{\prime \prime}$

QUESTION 4

a) Three points A, Z and B are collinear. $\mathrm{A} 01^{\prime \prime}$ reading theodollite having a multiplying constant of 100 and additive constant of (0) zero was correctly centred and levelled up a height of $1,620 \mathrm{~m}$ above Z of reduced level 1300 m . A levelling staff was held vertically at points A and B in turn and the following readings were obtained:

STAFF POSITION STAFF READINGS (m) VERTICAL ANGLE

A
2.140, 1.956, 1.774
$87^{0} 42^{\prime} 33^{\prime \prime}$
2.082, 1.815, 1.546
$93^{0} 16^{\prime} 14^{\prime \prime}$

Calculate

(i) the horizontal length AB and the reduced levels of A and B .
(ii) the gradient A to B (4 marks)
b) List the instrumental errors normally associated with E.D.M. instruments.
c) List three classes of E.D. Ms based on the type of carrier wave.

QUESTION 5

Point D was surveyed by sighting the following trigonometrically beacons: A, B and C . (see fig. 5). The following mean observed horizontal angles were obtained;

Mean observed horizontal angles
$\mathrm{ADB}=138^{0} 06^{\prime} 45^{\prime \prime}$
$\mathrm{BDC}=98^{0} 36^{\prime} 25^{\prime \prime}$
$\mathrm{CDA}=123^{0} 17^{\prime} 05^{\prime \prime}$
Given
Coordinates (m)
A $+670,830+147,080$
B - 484,950 - 276,640
C $-385,720+590,550$
Calculate the provisional coordinates of D.

QUESTION 6

Briefly explain the following processes involved in setting out.
a) aims of setting out
(5 marks)
b) care of instruments
(5 marks)
c) plans
(10 marks)
d) regular site inspection
(3 marks)
e) maintaining accuracy
(2 marks)

END OF EXAMINATION

