NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY CFE 5302

FACULTY OF COMMERCE DEPARTMENT OF FINANCE

MSc FINANCIAL ENGINEERING

Derivatives Pricing and Applications - $\mathrm{CFE}\ 5302$

NOV/DEC 2015 EXAMINATION

Time : 3 hours

INSTRUCTIONS:

Candidates should attempt **ALL QUESTIONS.**

This paper carries 100 Marks.

Statistical Tables are attached at the end of the question paper.

QUESTION 1

The forward price of an investment asset providing no income is given by

$$F_0 = S_0 e^{rT},$$

where T is time to maturity, r is the risk-free rate of interest and S_0 is the asset price at time t = 0. Consider a four-month forward contract to buy an ounce of gold currently valued at \$1300. Assume that the four-month risk-free rate of interest is 6% per annum.

(a) Obtain the forward price.

(b) What would arbitrageurs do if $F_0 \neq S_0 e^{rT}$? [3] (c) Suppose f is the value of a long forward contract that has a delivery price of K. The value f is generally given by

$$f = (F_0 - K)e^{-rT}.$$

If the delivery price is \$1320, calculate the value of the long forward contract.

Look at the spot interest rates shown in the following Table:

Year	Spot rate
1	$Y(t;t+1) \equiv r_1 = 0.050$
2	$Y(t;t+2) \equiv r_2 = 0.045$
3	$Y(t;t+3) \equiv r_3 = 0.040$
4	$Y(t;t+4) \equiv r_4 = 0.035$
5	$Y(t;t+5) \equiv r_5 = 0.030$
oose that	t someone told you that th

Suppose that someone told you that the 6-year spot interest rate was 5.50 percent.

(a) Would you believe him or not? Why?

[4]

[20]

[3]

[4]

- (b) Could you make money if he was right? How?
- (c) What is the sensible value for the 6-year spot rate?

QUESTION 2

Consider a simple discrete-time model with T = 2 and four states of the world. Suppose r = 4% and the risky security is as follows:

 $\omega_k \quad t = 0 \qquad t = 1 \qquad t = 2$

(a) Draw the resulting tree diagram.

(b) Find Q_u and Q_d .

- (c) Find Q_{uu} and Q_{ud} .
- (d) Find Q_{du} and Q_{dd} .

(e) Hence, by showing all the necessary steps, find the discrete time martingale measure Q. [4]

(f) What can you conclude regarding the resulting trading strategy? [2]

[2]

[3]

[3]

[3]

[2]

[4]

[20]

[8]

[4]

QUESTION 3

The Black-Scholes Call and Put formulae are

$$C = S_0 N(d_1) - N(d_2) X e^{-rT}$$
$$P = N(-d_2) X e^{-rT} - S_0 N(-d_1)$$

where,

$$d_1 = \left[\ln(S_0/X) + (r+0.5\sigma^2)T\right]/\sigma\sqrt{T},$$

$$d_2 = d_1 - \sigma\sqrt{T}.$$

By recalling that

$$N'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

and that

$$\ln \frac{SN'(d_1)}{e^{-r(T-t)}K_c N'(d_2)} = 0$$

$$\Rightarrow SN'(d_1) - e^{-r(T-t)}K_c N'(d_2) = 0,$$

(a) Deduce an expression for $\rho := \frac{\partial C}{\partial r}$. (b) Show that the partial derivative $\partial C / \partial K$ (which

(b) Show that the partial derivative $\partial C/\partial K$ (which sadly does not have a Greek name) satisfies [8]

$$\frac{\partial C}{\partial E} = -e^{-r(T-t)}N(d_2).$$

(c) Deduce that $\partial C / \partial K < 0$ and interpret the results.

QUESTION 4 [20]		
Consider an American option with the following specifications:		
• The underlying asset is currently valued at \$120.		
• The strike price is set at \$120.		
\bullet The risk-free rate is 5% per annum and the risk iness of investing in the underlying is given		
as 30% . Consider a time partition of 1 year and a maturity of 3 years.		
(a) Calculate the down and up movement factors. [2]		
(b) Calculate the down and up probabilities. [2]		
(c) Hence, calculate all the underlying asset prices.		
(d) What is the fair price you should pay to have a call option document drafted? Show all		
the working. [10]		
QUESTION 5		
As a means to write down an expression for the up/down asset price model used in the		
binomial method, we define a random variable R_i such that $R_i = 1$ if the asset price goes		
up from time $(i-1)\delta t$ to $i\delta t$ and $R_i = 0$ if the asset price goes down. Hence, $R_i = 1$ with		
probability p and $R_i = 0$ with probability $1 - p$. This means that R_i is a Bernoulli random		
variable with parameter p so that $E(R_i) = p$ and $var(R_i) = p(1-p)$. After n time increments		

It can be shown that the asset price $S(n\delta t)$ at time $t = n\delta t$ is given by

$$S(n\delta t) = S_0 u^{\sum_{i=1}^n R_i} d^{n - \sum_{i=1}^n R_i}.$$
 (1)

(a) Find an expression for
$$\log\left(\frac{S(n\delta t)}{S_0}\right)$$
. [4]

the asset has undergone $\sum_{i=1}^{n} R_i$ upward movements and $n - \sum_{i=1}^{n} R_i$ downward movements.

(b) Find expressions for $E\left[\log\left(\frac{S(n\delta t)}{S_0}\right)\right]$ and $\operatorname{var}\left[\log\left(\frac{S(n\delta t)}{S_0}\right)\right]$. [4]

To match the continuous asset price model used in the Black-Scholes analysis, we require the mean of $\log\left(\frac{S(n\delta t)}{S_0}\right)$ to be $(\mu - \frac{1}{2}\sigma^2)n\delta t$ and the variance to be $\sigma^2 n\delta t$. The binomial method works with expected values.

[4]

(c) If we impose the risk neutrality assumption u = r on the mean and variance, show that we get the following conditions: [4]

$$p\log u + (1-p)\log d = (r - \frac{1}{2}\sigma^2)\delta t,$$
 (2)

$$\log\left(\frac{u}{d}\right) = \sigma \sqrt{\frac{\delta t}{p(1-p)}} \tag{3}$$

(d) Show that by setting $p = \frac{1}{2}$, we obtain the following up and down binomial parameters:[4]

$$u = e^{\sigma\sqrt{\delta t} + (r - \frac{1}{2}\sigma^2)\delta t}; \quad d = e^{-\sigma\sqrt{\delta t} + (r - \frac{1}{2}\sigma^2)\delta t}$$

$$\tag{4}$$

(e) For the parameters u and d above, show that:

 $u = 1 + \sigma \sqrt{\delta t} + r \delta t + O(\delta t^{3/2}), \ d = 1 - \sigma \sqrt{\delta t} + r \delta t + O(\delta t^{3/2}), \text{ as } \delta t \to 0.$

END OF EXAMINATION PAPER