NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 CFE 5302

FACULTY OF COMMERCE DEPARTMENT OF FINANCE

MSc FINANCIAL ENGINEERING

Derivatives Pricing and Applications - CFE 5302

NOV/DEC 2015 EXAMINATION

Time : 3 hours

INSTRUCTIONS:
Candidates should attempt ALL QUESTIONS.
This paper carries 100 Marks.
Statistical Tables are attached at the end of the question paper.

QUESTION 1

The forward price of an investment asset providing no income is given by

$$
F_{0}=S_{0} e^{r T}
$$

where T is time to maturity, r is the risk-free rate of interest and S_{0} is the asset price at time $t=0$. Consider a four-month forward contract to buy an ounce of gold currently valued at $\$ 1300$. Assume that the four-month risk-free rate of interest is 6% per annum.
(a) Obtain the forward price.
(b) What would arbitrageurs do if $F_{0} \neq S_{0} e^{r T}$?
(c) Suppose f is the value of a long forward contract that has a delivery price of K. The value f is generally given by

$$
f=\left(F_{0}-K\right) e^{-r T}
$$

If the delivery price is $\$ 1320$, calculate the value of the long forward contract.

Look at the spot interest rates shown in the following Table:

Year	Spot rate
1	$Y(t ; t+1) \equiv r_{1}=0.050$
2	$Y(t ; t+2) \equiv r_{2}=0.045$
3	$Y(t ; t+3) \equiv r_{3}=0.040$
4	$Y(t ; t+4) \equiv r_{4}=0.035$
5	$Y(t ; t+5) \equiv r_{5}=0.030$

Suppose that someone told you that the 6 -year spot interest rate was 5.50 percent.
(a) Would you believe him or not? Why?
(b) Could you make money if he was right? How?
(c) What is the sensible value for the 6 -year spot rate?

QUESTION 2

Consider a simple discrete-time model with $T=2$ and four states of the world. Suppose $r=4 \%$ and the risky security is as follows:

$$
\omega_{k} \quad t=0 \quad t=1 \quad t=2
$$

$$
\omega_{1} \quad S_{0}=10 \quad S_{1}=12 \quad S_{2}=13
$$

$$
\omega_{2} \quad S_{0}=10 \quad S_{1}=12 \quad S_{2}=10
$$

$$
\omega_{3} \quad S_{0}=10 \quad S_{1}=8 \quad S_{2}=10
$$

$$
\omega_{4} \quad S_{0}=10 \quad S_{1}=8 \quad S_{2}=7
$$

(a) Draw the resulting tree diagram.
(b) Find Q_{u} and Q_{d}.
(c) Find $Q_{u u}$ and $Q_{u d}$.
(d) Find $Q_{d u}$ and $Q_{d d}$.
(e) Hence, by showing all the necessary steps, find the discrete time martingale measure Q.
(f) What can you conclude regarding the resulting trading strategy?

QUESTION 3

The Black-Scholes Call and Put formulae are

$$
\begin{aligned}
& C=S_{0} N\left(d_{1}\right)-N\left(d_{2}\right) X e^{-r T} \\
& P=N\left(-d_{2}\right) X e^{-r T}-S_{0} N\left(-d_{1}\right)
\end{aligned}
$$

where,
$d_{1}=\left[\ln \left(S_{0} / X\right)+\left(r+0.5 \sigma^{2}\right) T\right] / \sigma \sqrt{T}$,
$d_{2}=d_{1}-\sigma \sqrt{T}$.
By recalling that

$$
N^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

and that

$$
\begin{aligned}
\ln \frac{S N^{\prime}\left(d_{1}\right)}{e^{-r(T-t)} K_{c} N^{\prime}\left(d_{2}\right)} & =0 \\
\Rightarrow S N^{\prime}\left(d_{1}\right)-e^{-r(T-t)} K_{c} N^{\prime}\left(d_{2}\right) & =0
\end{aligned}
$$

(a) Deduce an expression for $\rho:=\frac{\partial C}{\partial r}$.
(b) Show that the partial derivative $\partial C / \partial K$ (which sadly does not have a Greek name) satisfies

$$
\frac{\partial C}{\partial E}=-e^{-r(T-t)} N\left(d_{2}\right) .
$$

(c) Deduce that $\partial C / \partial K<0$ and interpret the results.

QUESTION 4

Consider an American option with the following specifications:

- The underlying asset is currently valued at $\$ 120$.
- The strike price is set at $\$ 120$.
- The risk-free rate is 5% per annum and the riskiness of investing in the underlying is given as 30%. Consider a time partition of 1 year and a maturity of 3 years.
(a) Calculate the down and up movement factors.
(b) Calculate the down and up probabilities.
(c) Hence, calculate all the underlying asset prices.
(d) What is the fair price you should pay to have a call option document drafted? Show all the working.

QUESTION 5

As a means to write down an expression for the up/down asset price model used in the binomial method, we define a random variable R_{i} such that $R_{i}=1$ if the asset price goes up from time $(i-1) \delta t$ to $i \delta t$ and $R_{i}=0$ if the asset price goes down. Hence, $R_{i}=1$ with probability p and $R_{i}=0$ with probability $1-p$. This means that R_{i} is a Bernoulli random variable with parameter p so that $E\left(R_{i}\right)=p$ and $\operatorname{var}\left(R_{i}\right)=p(1-p)$. After n time increments the asset has undergone $\sum_{i=1}^{n} R_{i}$ upward movements and $n-\sum_{i=1}^{n} R_{i}$ downward movements. It can be shown that the asset price $S(n \delta t)$ at time $t=n \delta t$ is given by

$$
\begin{equation*}
S(n \delta t)=S_{0} u^{\sum_{i=1}^{n} R_{i}} d^{n-\sum_{i=1}^{n} R_{i}} \tag{1}
\end{equation*}
$$

(a) Find an expression for $\log \left(\frac{S(n \delta t)}{S_{0}}\right)$.
(b) Find expressions for $E\left[\log \left(\frac{S(n \delta t)}{S_{0}}\right)\right]$ and $\operatorname{var}\left[\log \left(\frac{S(n \delta t)}{S_{0}}\right)\right]$.

To match the continuous asset price model used in the Black-Scholes analysis, we require the mean of $\log \left(\frac{S(n \delta t)}{S_{0}}\right)$ to be $\left(\mu-\frac{1}{2} \sigma^{2}\right) n \delta t$ and the variance to be $\sigma^{2} n \delta t$. The binomial method works with expected values.
(c) If we impose the risk neutrality assumption $u=r$ on the mean and variance, show that we get the following conditions:

$$
\begin{align*}
p \log u+(1-p) \log d & =\left(r-\frac{1}{2} \sigma^{2}\right) \delta t \tag{2}\\
\log \left(\frac{u}{d}\right) & =\sigma \sqrt{\frac{\delta t}{p(1-p)}} \tag{3}
\end{align*}
$$

(d) Show that by setting $p=\frac{1}{2}$, we obtain the following up and down binomial parameters:[4]

$$
\begin{equation*}
u=e^{\sigma \sqrt{\delta t}+\left(r-\frac{1}{2} \sigma^{2}\right) \delta t} ; \quad d=e^{-\sigma \sqrt{\delta t}+\left(r-\frac{1}{2} \sigma^{2}\right) \delta t} \tag{4}
\end{equation*}
$$

(e) For the parameters u and d above, show that:
$u=1+\sigma \sqrt{\delta t}+r \delta t+O\left(\delta t^{3 / 2}\right), d=1-\sigma \sqrt{\delta t}+r \delta t+O\left(\delta t^{3 / 2}\right)$, as $\delta t \rightarrow 0$.

END OF EXAMINATION PAPER

