NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY CFE 5305

FACULTY OF COMMERCE DEPARTMENT OF FINANCE

CFE 5305: FINANCIAL TIME SERIES ANALYSIS

NOVEMBER/DECEMBER 2015: EXAMINATION

Time: 3 hours

Candidates should attempt FOUR questions.

A1. (a) Give two reasons why the study of financial time series involves returns, instead of prices, of assets ?
(b) Suppose that $\left\{r_{t}\right\}$ is a financial time series given by

$$
r_{t}=\mu+\sum_{i=0}^{\infty} \psi_{i} a_{t-i}
$$

where μ is the mean, $\psi_{0}=1$ and $\left\{a_{t}\right\}$ is a white noise series. Show that the autocorrelation function ρ_{l} is given by

$$
\rho_{l}=\frac{\sum_{i=1}^{\infty} \psi_{i} \psi_{i+l}}{1+\sum_{i=1}^{\infty} \psi_{i}^{2}}, \quad l \geq 0 .
$$

(c) Consider an $\operatorname{AR}(2)$ model of the form

$$
r_{t}=\phi_{0}+\phi_{1} r_{t-1}+\phi_{2} r_{t-2}+a_{t}
$$

where $\phi_{0}, \phi_{1}, \phi_{2}$ are constants and a_{t} is a white noise series.
Deduce, showing all essential details, that the autocorrelation function ρ_{l} is given by

$$
\begin{aligned}
\rho_{0} & =1 \\
\rho_{1} & =\frac{\phi_{1}}{1-\phi_{2}}, \\
\phi_{l} & =\phi \rho_{l-1}+\phi_{2} \phi_{l-2}, \quad l \geq 2 .
\end{aligned}
$$

(d) Suppose that the simple return of a monthly bond index follows the $M A(1)$ model

$$
R_{t}=a_{t}+0.2 a_{t-1}, \quad \sigma_{a}=0.025
$$

Assume that $a_{100}=0.01$.
(i) Compute 1-step and 2-step ahead forecasts of the return at the forecast origin $t=100$.
(ii) Estimate the standard deviation of the estimated forecast errors.
(iii) Compute the lag-1 and lag-2 autocorrelations of the return series. $+$

A2. (a) State and explain the four steps for building a volatility model for an asset return series.
(b) Derive multi step ahead forecasts for a $\operatorname{GARCH}(1,2)$ model at the forecast origin h.
(c) Consider the following $\operatorname{ARCH}(1)$ model

$$
a_{t}=\sigma_{t} \epsilon_{t}, \quad \sigma_{t}^{2}=\alpha_{0}+\alpha_{1} a_{t-1}^{2},
$$

where $\alpha_{0}>0$ and $\alpha_{1} \geq 0$.
(i) Show that the fourth moment, m_{4}, of a_{t} is given by

$$
m_{4}=\frac{3 \alpha_{0}^{2}\left(1+\alpha_{1}\right)}{\left(1-\alpha_{1}\right)\left(1-3 \alpha_{1}^{2}\right)}
$$

(ii) Discuss any two implications of the result in Question 2 (c) (i).

A3. (a) A stock price is currently $\$ 60$ per share and follows the geometric Brownian motion

$$
d P_{t}=\mu P_{t} d t+\sigma P_{t} d t
$$

Given that the average return and the sample standard deviation for the year 2010 are 0.0031 and 0.02215 , respectively, estimate the parameters μ and σ assuming that there were 252 trading days in 2010.
(b) Assume that in Question A3(a) the expected return μ from the stock is 20% per annum and its volatility is 40% per annum.
(i) What is the probability distribution for the stock price in 2 years?
(ii) Obtain the mean and standard deviation of the distribution and construct a 95% confidence interval for the stock price.

A4. Considering the forward price F of a nondividend-paying stock, we have

$$
F_{t, T}=P_{t} \exp \{r(T-t)\},
$$

where r is the risk-free interest rate, which is constant, and P_{t} is the current stock price. Suppose P_{t} follows the geometric Brownian motion

$$
d P_{t}=\mu P_{t} d t+\sigma P_{t} d B_{t}
$$

(a) Determine a stochastic diffusion equation for $F_{t, T}$.
(b) Find an explicit expression for $F_{t, T}$.
(c) Find $E\left[P_{t}\right]$ and $\operatorname{Var}\left[P_{t}\right]$.

A5. Let a_{t} be white noise with variance σ_{a}^{2} and let $|\phi|<1$ be a constant. Consider the process

$$
\begin{aligned}
r_{1} & =a_{1}, \\
r_{t} & =\phi r_{t-1}+a_{t} ; \quad t=2 ; 3 ; \ldots
\end{aligned}
$$

(a) Find the mean and the variance of $\left\{r_{t}\right\}$. Is $\left\{t_{t}\right\}$ stationary ?
(b) Show that

$$
\operatorname{corr}\left(r_{t}, r_{t-h}\right)=\phi^{h}\left[\frac{\operatorname{var}\left(r_{t-h}\right.}{\operatorname{var}\left(r_{t}\right)}\right]^{\frac{1}{2}}
$$

for $0 \leq h<t$.
(c) Deduce that for large t,

$$
\operatorname{var}\left(r_{t}\right) \approx \frac{\sigma_{a}^{2}}{1-\phi^{2}}
$$

and

$$
\operatorname{corr}\left(r_{t}, r_{t-h}\right) \approx \phi^{h}, \quad h \geq 0 .
$$

(d) Comment on how you could use these results to simulate n observations of a stationary Gaussian $A R(1)$ process from simulated iid $N(0,1)$ values.
(e) Now suppose that

$$
r_{1}=\frac{a_{1}}{\sqrt{1-\phi^{2}}}
$$

Investigate whether this process is stationary or not?

