NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF COMMERCE DEPARTMENT OF FINANCE
BACHELOR OF COMMERCE HONOURS DEGREE IN FINANCE
PART IV - $1^{\text {st }}$ SEMESTER FINAL EXAMINATION - DECEMBER 2006
ADVANCED ASSET PRICING THEORY AND PRACTICE [CFI 4101]
TIME ALLOWED: 3 HOURS 10 MINUTES

INSTRUCTIONS

1. The paper is 3 hours 10 minutes.
2. Answer any $\boldsymbol{F O U R}$ questions.
3. Start each question on a fresh page.
4. All workings must be shown.

Question 1

[25 marks]
1.1 Discuss, briefly, the critical assumptions of a Capital Market Theory.
1.2 Explain the Theorem of two Fund Separation.
1.3 What are its limitations?
[5 marks]
Question 2
[25 marks]
The equation for the Capital Market Pricing Model [CAPM] is $\bar{R}=R_{F}+\beta_{i}\left(\bar{R}_{m}-R_{F}\right)$
Where: $\quad \bar{R}_{i}=\quad$ Expected Return of asset i
$R_{F}=\quad$ Risk free Return
$\beta_{i} \quad=\quad$ Beta of asset i
$\bar{R}_{m}=\quad$ Expected Return of Market Portfolio.
2.1 What do you understand by the Portfolio management strategy called market timing.
[5 marks]
2.2 Demonstrate how the CAPM may be applied in market timing, highlighting any practical problems that may be encountered and how they can be minimized.
[12 marks]
2.3 Discuss, briefly, the influences on the Beta of the equity of a company. [8 marks]

Question 3 [25 marks]

3.1 Examine the critical assumptions of Arbitrage Pricing Theory.
[6 marks]
3.2 The variable return of an asset \boldsymbol{i} is given by

Define the variables $\alpha_{1}, \beta_{i k}, F_{k}$ and ε
[7 marks]
3.2.1 The return of the Zimbabwe Stock Market index is given by a three-factor asset pricing model as follows:

$$
R_{m}=22 \%+3 F_{1}-1 F_{2}-1.6 F_{3}
$$

where $F_{1}=$ unexpected changes in the inflation index.
$F_{2}=$ unexpected changes in the level of government spending.
$F_{3}=$ Unexpected changes in the level of a political risk indicator.
The returns of three pure factor portfolios are also given by a three-factor asset-pricing model as follows:

$$
\begin{aligned}
& R_{p^{1}}=30 \%+F_{1} \\
& R_{p^{2}}=25 \%+F_{2} \\
& R_{p^{3}}=25 \%+F_{3}
\end{aligned}
$$

The rate of return on 91 day Treasury Bills is 10%
3.2.2 Determine if an Arbitrage opportunity exists.
[12 marks]

Question 4
 [25 marks]

4.1 Derive, from first principles, the formula for the cost of carry, no arbitrage, futures valuation model.
[10 marks]
4.2 You are given the following data pertaining to a stock market index on which a futures contract is traded:

- Index futures contract size = 1000
- Fair Value of index futures contract $=505.88$
- Actual Index futures contract price $=510.00$
- Actual spot index level $=500.00$
- Riskfree Return = 9%
- Suppose, you can borrow or lend $\$ 10000000$ at the riskfree rate of return and a spot portfolio which is similar to the Spot Index has declared a dividend of $\$ 5.00$ per contract size, payable in 3 months time.
4.2.1 Does an opportunity for Index Arbitrage exist? If so, what is the net cashflow if the strategy is adopted and the price of the spot portfolio is $\$ 600$ at the end of 3 months.
[10 marks]
4.2.2 Discuss briefly any two other practical uses of index futures in portfolio management.
[5 marks]

Question 5
 [25 marks]

Your company NUST Ltd is considering either to invest in a project now or wait for a year. The project details are given below:

- If investment takes place now, the company expects to sell 100000 units of product in the first year at a price of $\$ 100$ per unit.
- Variable costs are expected to be $\$ 25$ per unit for the foreseeable future.
- Annual fixed costs are expected to be $\$ 100000$ for the foreseeable future.
- In one year's time, demand is expected to either rise to 150000 units per annum at a price of $\$ 120$ and remain at this level until the end of its remaining economic life of 14 years, or with equal probability, fall to 30000 units per annum at a price of $\$ 50$ and also remain on this level until end of its life.

The opportunity cost of capital of the project is associated with a beta of 1.2, a riskfree rate of 5% and a market risk premium of 10%.
5.1 What is the value of the project today if no real options exist?

The project will operate, in an industry whose current index level is 4925 and which is forecast to be 10175 in a year's time if conditions turn out to be favourable for the industry or, 1350 if conditions turn out to be adverse.

Furthermore, the cost of acquiring the project is $\$ 25$ million whether the facility is acquired now or in a year's time and at the end of the first year the company has the option to abandon the project and realize $\$ 10$ million from sale of machinery.
5.2 Should NUST Ltd invest now or wait one year?
[18 marks]

