NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF COMMERCE DEPARTMENT OF FINANCE

MSc FINANCE AND INVESTMENTS

CFI 5211: FINANCIAL ENGINEERING

NOV/DEC 2015 EXAMINATION

Time : 3 hours

INSTRUCTIONS:
Candidates should attempt ALL QUESTIONS.
This paper carries 100 Marks.
Statistical Tables are attached at the end of the question paper.

QUESTION 1

The forward price of an investment asset providing no income is given by

$$
F_{0}=S_{0} e^{r T}
$$

where T is time to maturity, r is the risk-free rate of interest and S_{0} is the asset price at time $t=0$. Consider a four-month forward contract to buy an ounce of gold currently valued at $\$ 1300$. Assume that the four-month risk-free rate of interest is 6% per annum.
(a) Obtain the forward price.
(b) What would arbitrageurs do if $F_{0} \neq S_{0} e^{r T}$?
(c) Suppose f is the value of a long forward contract that has a delivery price of K. The value f is generally given by

$$
f=\left(F_{0}-K\right) e^{-r T}
$$

If the delivery price is $\$ 1320$, calculate the value of the long forward contract.

Look at the spot interest rates shown in the following Table:

Year	Spot rate
1	$Y(t ; t+1) \equiv r_{1}=0.050$
2	$Y(t ; t+2) \equiv r_{2}=0.045$
3	$Y(t ; t+3) \equiv r_{3}=0.040$
4	$Y(t ; t+4) \equiv r_{4}=0.035$
5	$Y(t ; t+5) \equiv r_{5}=0.030$

Suppose that someone told you that the 6 -year spot interest rate was 5.50 percent.
(a) Would you believe him or not? Why?
(b) Could you make money if he was right? How?
(c) What is the sensible value for the 6 -year spot rate?

QUESTION 2

Consider a simple discrete-time model with $T=2$ and four states of the world. Suppose $r=4 \%$ and the risky security is as follows:

$$
\begin{array}{llll}
\omega_{k} & t=0 & t=1 & t=2 \\
\hline & & & \\
\omega_{1} & S_{0}=10 & S_{1}=12 & S_{2}=13 \\
\omega_{2} & S_{0}=10 & S_{1}=12 & S_{2}=10 \\
\omega_{3} & S_{0}=10 & S_{1}=8 & S_{2}=10 \\
\omega_{4} & S_{0}=10 & S_{1}=8 & S_{2}=7
\end{array}
$$

(a) Draw the resulting tree diagram.
(b) Find Q_{u} and Q_{d}.
(c) Find $Q_{u u}$ and $Q_{u d}$.
(d) Find $Q_{d u}$ and $Q_{d d}$.
(e) Hence, by showing all the necessary steps, find the discrete time martingale measure Q.
(f) What can you conclude regarding the resulting trading strategy?

QUESTION 3

The simple forward rate or LIBOR forward rate L for $[S, T]$ contracted at time t, is the solution to the equation

$$
1 \cdot(1+(T-S) \cdot L)=1 \cdot \frac{p(t, S)}{p(t, T)}
$$

where time T is the maturity time of the forward LIBOR, $T-S$ is called the tenor and $1 /(T-S)$ is the "accrued factor" or the "day-count fraction".
(a) Deduce an equation for $L(t, S, T)$.
(b) Hence, deduce an equation for L when $t=S$ in (a).
(c) What is the name given to the process in (b)?

Consider a European call option on a non-dividend paying stock where the stock price is $\$ 51$, the exercise price is $\$ 50$, the time to maturity is 16 months and the risk-free rate is 1% per month.
(d) Find an upper bound for the option price.
(f) Find a lower bound for the option price.

QUESTION 4

Consider an American option with the following specifications:

- The underlying asset is currently valued at $\$ 120$.
- The strike price is set at $\$ 120$.
- The risk-free rate is 5% per annum and the riskiness of investing in the underlying is given as 30%. Consider a time partition of 1 year and a maturity of 3 years.
(a) Calculate the down and up movement factors.
(b) Calculate the down and up probabilities.
(c) Hence, calculate all the underlying asset prices.
(d) What is the fair price you should pay to have a call option document drafted? Show all the working.

QUESTION 5

The Black-76 formula for a caplet is given by

$$
\operatorname{Capl}_{i}^{B}(t)=\alpha_{i} p_{i}(t)\left\{L_{i}(t) N\left[d_{1}\right]-R N\left[d_{2}\right]\right\}
$$

where

$$
\begin{aligned}
d_{1} & =\frac{1}{\sigma_{i} \sqrt{T_{i}-t}}\left\{\ln \left(\frac{L_{i}(t)}{R}\right)+\frac{\sigma_{i}^{2}}{2} \cdot\left(T_{i}-t\right)\right\} \\
d_{2} & =\frac{1}{\sigma_{i} \sqrt{T_{i}-t}}\left\{\ln \left(\frac{L_{i}(t)}{R}\right)-\frac{\sigma_{i}^{2}}{2} \cdot\left(T_{i}-t\right)\right\} \\
& =d_{1}-\sigma_{i} \sqrt{T_{i}-t}
\end{aligned}
$$

Consider a caplet on LIBOR with the following specifications:
o The notional amount is $N=\$ 10000000$.
o $T_{i}-t=0.25$ years
o Current quoted (clean) LIBOR is 6%, constituting two-thirds of the (clean) caplet rate.
o The 3 month risk free interest rate is 3% per annum.
o The volatility of the forward LIBOR is estimated at 6% per annum.
(a) Knowing that the bond price is given by $p(t)=N \exp (-r T)$, compute $p(t)$.
(b) Calculate the accrual factor.
(c) Find the necessary option parameters.
(d) Hence, by showing all the necessary steps, find the premium on the caplet.
(e) Under what circumstances would you exercise the caplet at maturity?

