### NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

#### FACULTY OF INDUSTRIAL TECHNOLOGY DEPARTMENT OF ELECTONIC ENGINEERING BACHELOR OF ENGINEERING (HONS) DEGREE

**Final Examination January 2011** 

#### TEE 1103 ELECTRICAL ENGINEERING CIRCUIT ANALYSIS

**Duration of Examination – 3 Hours** 

#### **INSTRUCTIONS TO CANDIDATES**

- 1. Answer any <u>FIVE</u> questions only.
- 2. Each question carries 20 marks.
- 3. Show your steps clearly in any calculation.
- 4. Start the answers for each question on a fresh page.

#### Question 1

Ţ

The Line w

For the network shown in figure 1,

a) Calculate the current through the  $2k\Omega$  resistor.

[14 marks]

T

b) What is the voltage across, and the power dissipated in, the  $2k\Omega$  resistor. [6 marks]



Figure 1.(All resistances are in Ohms and k denotes kilo)

1

#### ALE AND Question 2010011

For the network in figure 2:

E(CLEMER) (Using the format approach, write the nodal equations.

[9 marks]

[8-marks]

[3 marks]



c) Is the bridge balanced? Give reasons



Figure 2. (All resistances are in Ohms)

#### Question 3

For the circuit in Figure 3

- a) The capacitor is initially uncharged. Find mathematical expressions for the voltage across the capacitor, C<sub>1</sub>, resistor R<sub>1</sub> and the current through the capacitor after the switch is thrown into position 1.
- b) After 6 time constants, the switch is thrown into position 2. Find mathematical expressions for the voltage across the capacitor, C<sub>1</sub>, resistor R<sub>2</sub> and the current through the capacitor after the switch is thrown into position 2. [6 marks]
- c) Plot the waveforms for voltages and currents obtained in parts (a) and (b) on the same axis.

[8 marks]



Figure 3. (All resistances are in Ohms and k denotes kilo)

2

#### **Question 4** For Figure 4,

atio

- Find the Thevenin's equivalent circuit for the network external to the  $6\Omega$  capacitive a) impedance. [14 marks]

nvenameresulting circulanton - Souton- commen



Figure 4(All impedances are in Ohms)

6 marks

[6 marks]

[3 marks]

#### Question 5

The network in figure 5 shows reactive and real power consumed by each block in an ac circuit.

- Find the total real, reactive and apparent power. a) [6 marks]
- Find the power factor. b) [2 marks]
  - Find the current  $I_T$ . c) [3 marks]
  - d) Draw the power triangle.
  - State the type of elements in each electrical box. e)



## Question 6

For the circuit shown in figure 6, the frequency is 60Hz. (rk externala) Find the inductance of the 3 $\Omega$  impedance.

[3 marks]

# b) Using Superposition Theorem, find the current through the 3Q impedance. [14 marks]



Figure 6. (All impedances are in Ohms)

# **END OF PAPER**