NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING DEGREE DURATION 3 HOURS – JANUARY 2011

TEE 2111 DIGITAL ELECTRONICS

INSTRUCTIONS TO CANDIDATES

- 1. ANSWER ALL QUESTIONS
- 2. SHOW YOUR STEPS CLEARLY IN CALCULATIONS
- 3. START THE ANSWER FOR EACH QUESTION ON A FRESH PAGE

QUESTION ONE

Convert the following numbers:

- a) 68780053₁₀ into a binary number
- b) 123754018 into a hexa-decimal number
- c) 111010101010011.11101₂ into a decimal number
- d) 0.84765₁₀ into an octal number
- e) 9DEC154₁₆ into an octal number

[10 points]

OUESTION TWO

Perform the following binary arithmetic operations:

- a) Add 10101111012 and 111001110012
- b) Divide 1001001 9100102 by 1100102
- c) Use 1s complements to subtract 1011011000101.1012 from 10101100110.1112
- d) Use 2s complements to subtract 10011001.11₂ from 11000111000111.101₂

[16 points]

QUESTION THREE

Redraw the circuit shown in Figure 1 using 2-input NAND gates only.

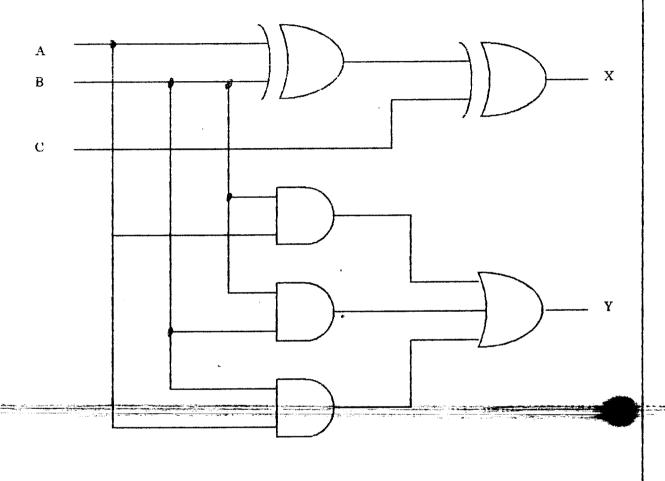


Figure 1

[8 points]

QUESTION FOUR

Consider the output Y in Table 1.

- a) Write the logic equation for the function Y as logic sum of AND terms
- b) Minimize the expression using Boolean algebra theorems.
- c) Convert the minimized expression from (c) so that the circuit is implemented on NOR gates only.
- d) Draw the circuit diagram

[20 points]

Table 1

A	В	C	D	Y	Z
0	0	0	0	1	0
0	0	0	1	1	1
0	0	1	0	0	1
	0	1	1	0	0
0	1	0	0	1	1
0	1	0	1	0	0
0	1	1	0	1	Х
0	1	1	.1	0	0
1	0	0	0	1	1
1	0	0	1	0_	X
1	0	1	0	1	ايرا
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	1 '	1	X
1	1	1	0	0	0
1	1	1	1	1	1

QUESTION FIVE

Consider the output Z in Table 1.

- a) Write the logic equation for the function Z in canonical form.
- b) Transfer the expression for Z on a Karnaugh Map
- c) Minimize the expression.
- d) Convert the minimized expression from (c) so that the circuit is implemented on NAND gates only.
- e) Draw the circuit diagram.

[16 points]

QUESTION SIX

Using the circuit diagram of a full adder, show the full circuit diagram of an adder that will add two 3-bit numbers.

[10 points]

QUESTION SEVEN

A logic function F is given with the following expression:

$$F(A,B,C,D) = \sum (0,1,2,4,6,8,13,14)$$
.

Use a 4-to-one multiplexer to implement the logic function [10 points]

QUESTION EIGHT

Design a binary-to-octal decoder circuit. Only one output at time should be at logic 1 indicating the binary code at the inputs.

Draw the circuit diagram.

[10 points]