NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ELECTRONIC ENGINEERING (HONS) DEGREE

Supplementary Examination August 2011 TEE 2111

Analogue Electronics

Duration of Examination 3 Hours

Instructions to Candidates:

1. Answer any <u>five</u> questions only.

2. All questions carry equal marks.

3. Show all your steps clearly in any calculation.

4. Start the answers for each question on a fresh page.

Question 1

(a) The circuit values in figure 1 are $R_1=33 \text{ k}\Omega, R_2=10 \text{ k}\Omega, R_C=2.2 \text{ k}, R_E=1 \text{ k}\Omega$ and $V_{CC}=18$ V.A silicon NPN transistor is used with $\beta = 100$. Find the base working current I_{BQ} , the collector working current I_{CQ} and the collector emitter working voltage V_{CEQ} .

(15 marks)

(b) A thermistor is used for temperature stabilization ,what type of thermistor would it be .Re-draw the circuit with the thermistor . (5 marks)

For the circuit shown in fig 3

- (a) Draw the half equivalent circuit that would be used to calculate the differential voltage gain. (6 marks)
- (b) Give the expression that would be used to find the differential input resistance.(2 mark)
- (c) Give the expression used to calculate the differential voltage gain . (4 marks)
- (d) Draw the half equivalent circuit that would be used to find the common mode equivalent circuit. (6 marks)
- (e) Give the expression of the common mode input resistance for the circuit. (2 marks)

Question 4

In integrated circuit techniques the following circuits are used .Show the arrangement of each circuit when used.

(i)	Level shifting with emitter follower.	(4 marks)
(ii)	Voltage level-shifting with zener diode	(4 marks)
(iii)	Temperature compensated bias circuit.	(4 marks)
(iv)	Current mirror circuit.	(4 marks)
(v)	Current source circuit which is not temperature dependent.	(4 marks)

dissipated in the zener diode.

(3 marks)

(iii) The minimum rated power dissipation in the series resistor R_s (4 marks)