N ADV	ATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOG FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING DEGREE ANCED INTEGRATED CIRCUITS AND MICROELECTRONICS – TEE SUPPLEMENTARY EXAMINATION – AUGUST 2011 DURATION 3 HOURS	3Y 5111
1. ANS 2. EAC 3. SHO 4. STA	RUCTIONS TO CANDIDATES SWER ANY FOUR QUESTIONS CH QUESTION CARRIES EQUAL MARKS OW YOUR STEPS CLEARLY IN CALCULATIONS ART THE ANSWER FOR EACH QUESTION ON A FRESH PAGE	E
Q. 1.		
a)	Describe the characteristics of an operational amplifier classified Noise'.	as 'Low
	[4	points
b)	Explain the procedure in integrated circuits fabrication called 'Oxidation	on'.
	[8]	points
c)	Show the circuit diagram of a <u>Widlar Current Source</u> . Give the relation between the input and the output current.	tionship
	[6	points]
d)	Give the block diagram of a Basic Isolation Amplifier. Explain its opera	ation.
	[7	points]
Q. 2.		
a)	Describe the characteristics of an operational amplifier classified as 'L Drift'.	.ow
	[4	points]
b)	Explain the procedure in integrated circuits fabrication called 'Zone Rei	fining'.

.

1

c) Show the circuit diagram of a <u>Simple Current Source</u>. Give the relationship between the input and the output current.

[6 points]

d) A SiO₂ layer of 0.4 μ m is to be grown on (100) silicon by dry oxidation at temperature of 1000 °C. Find the time required using the information below.

$$x_o = \frac{A}{2} \left[\sqrt{\left(1 + \frac{t + \tau_o}{A^2 / 4B} \right)} - 1 \right], \text{ where } \tau_o = \frac{x_i^2 + Ax_i}{B};$$

$$t = \frac{A^2}{4B} \left[\left(\frac{2x_o}{A} + 1 \right)^2 - 1 \right] - \tau_o, \ A = K_1 e^{+E_1/kT} \text{ and } B = K_2 e^{-E_2/kt}$$

Parameter	(111) Silicon		(100) Silicon	
	Wet	Dry	Wet	Dry
K ₁ (μm)	2.39.10-6	1.24.10-4	4.02.10 ⁻⁶	2.08.10-4
$K_2(\mu m^2/hour)$	214	772	214	772
$E_1 (eV)$	1.29	0.77	1.29	0.77
$E_2 (eV)$	0.77	1.23	0.71	1.23
<i>x_i (</i> μm)	0	0.02	0	0.02

 $k = 8.63.10^{-5} \text{ eV}/{^{\circ}\text{K}}$

• • • [9 points]

Q. 3.

a) Describe the characteristics of an operational amplifier classified as 'Wideband'.

[4 points]

b) Explain the procedure in integrated circuits fabrication called 'Photolithography'.

[8 points]

c) Show the circuit diagram of a level – shifter circuit using a <u>Voltage Multiplier</u>. Give the relationship between the input and the output voltage.

[6 points]

d) Give the circuit diagram of an <u>Instrumentation Amplifier</u> and derive expression for its voltage gain.

[7 points]

Q. 4.

a) Describe the characteristics of an operational amplifier classified as 'High Current'.

[4 points]

b) Explain the procedure in integrated circuits fabrication called 'Diffusion'.

[7 points]

c) Show the circuit diagram of an R/2R ladder Digital – to – Analogue Converter. Use equivalent circuits to prove the circuit operation for the following conditions:

D_o D_1 D₂ D_3 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 Assume that the logic 1 (high level) is 5 V. [14 points] Q. 5. a) Describe the characteristics of an operational amplifier classified as 'High [4 points] b) Explain the procedure in integrated circuits fabrication called 'Crystal [5 points] Show the circuit diagram of a Multiple Current Source. Explain the c) practical application of a such source. [6 points] d) Give circuit diagram, illustrate and explain the principle of operation of: A Voltage to Frequency Converter; (i) A Frequency to Voltage Converter. (ii) [10 points]

4

Q. 6.

a) Describe the characteristics of an operational amplifier classified as ' Low Bias Current'.

[4 points]

b) Explain the procedure in integrated circuits fabrication called 'Metalization'.

[6 points]

c) Show the circuit diagram of a level – shifter circuit using a <u>Darlington Pair</u>. Give the relationship between the input and the output voltage.

[7 points]

- d) Show the circuit of a <u>Differential Amplifier</u> as a monolithic integrated circuit. Derive an expression for:
 - The differential close-loop voltage gain
 - The common-mode voltage gain.

[8 points]