NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF SCIENCE AND TECHNOLOGY EDUCATION DEPARTMENT OF MECHANICAL ENGINEERING

STRENGTH OF MATERIALS II

PTE 2247
Second Semester Examination Paper
May 2019

This examination paper consists of 6 pages
Time Allowed: 3 hours
Total Marks: 100
Special Requirements: None
Examiner's Name: Eng E Murena
INSTRUCTIONS AND INFORMATION TO CANDIDATE

1. Answer any five (5) questions.
2. Each question carries 20 marks.
3. Use of calculators is permissible.

Question 1

At a point on the surface of a cylinder, loaded by internal pressure, the material is subjected to biaxial stresses $\sigma x=90 \mathrm{MPa}$ and $\sigma y=20 \mathrm{MPa}$, as shown on the stress element of figure (a). Using Mohr's circle, determine the stresses acting on an element inclined at an angle $\theta=30^{\circ}$. (Consider only the in-plane stresses, and show the results on a sketch of a properly oriented element).
[20Marks]

Figure Q1

Question 2

A thin cylinder 60 mm internal diameter, 225 mm long with walls 2.7 mm thick is subjected to an internal pressure of $6 \mathrm{MN} / \mathrm{m}^{2}$. You may assume that $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$. Calculate:
i. The hoop stress.
[5Marks]
ii. The longitudinal stress.
iii. The change in length.
[5Marks]
iv. The change in diameter.

Question 3

A cylinder is 150 mm mean diameter and 750 mm long with a wall 2 mm thick. It has an internal pressure of 0.8 MPa greater than the outside pressure. Calculate the following:
i. The circumferential strain.
[4Marks]
ii. The longitudinal strain.
[4Marks]
iii. The change in cross sectional area.
[4Marks]
iv. The change in length.
[4Marks]
v. The change in volume.

Question 4

A shaft 50 mm diameter with internal diameter 30 mm and 0.7 long is subjected to a tourque of 1200 Nm . Calculate the shear stress and the angle of twist. If G is 90 Gpa .
[20Marks]

Question 5

A cantilever beam is 6 m long and has a point load of 20 kN at the free end. The flexural stiffness is $110 \mathrm{MN} m^{2}$. Calculate the slope and deflection at the free end.
[20Marks]

Question 6

Determine the shear force V and bending moment M at the midpoint C of the simple beam $A B$ shown in the Figure Q6.
[20Marks]

Figure Q6

