NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 FACULTY OF SCIENCE AND TECHNOLOGY EDUCATION DEPARTMENT OF TECHNICAL AND ENGINEERING EDUCATION AND TRAINING
 ENGINEERING MECHANICS 1- STATICS AND DYNAMICS
 PTE 1246

Main Examination
May 2019

This examination paper consists of 4 pages
Time allowed: $\mathbf{3}$ hours
Total marks: 100

Examiner's name: Eng. G Munhuwamambo
INSTRUCTIONS

1. Answer any FIVE questions out of SEVEN.
2. Each question carries $\mathbf{2 0}$ marks.
3. Show all working
4. There are five (5) printed pages.
5. Use of calculator is allowed

QUESTION ONE

Determine the magnitude and direction of the resultant of system of forces shown below .

150 N at 30^{0}
$\mathbf{8 0 N}$ at 110^{0}
110 N at 270^{0}
$\mathbf{1 0 0 N}$ at $\mathbf{3 4 5}^{\mathbf{0}}$
NB USE Bow s notation to position your concurrent forces
QUESTION TWO

A beam AC 6 m long is simply supported at R_{A} at the extreme left hand end and at $\mathrm{R}_{\mathrm{B}}, 5 \mathrm{~m}$ from R_{A}. It carries a 10 KN point load at position $\mathrm{E}, 1 \mathrm{~m}$ from R_{A}, a 15 KN load, 4 m from R_{A} and a 8 KN point load at the other end C. It also carries a Uniformly Distributed Load of $6 \mathrm{KN} / \mathrm{m}$ for a length of 5 metres starting from R_{A}.
a) Draw the shear force diagram
b) Draw the bending moment diagram
c) Determine the position of any point of contraflexture

QUESTION THREE

A locomotive and train have masses 90 tonne and 400 tonne respectively. The coefficient of friction is 0,5 . If 80% of the weight of the locomotive is supported by the wheels and the tractive resistance is $100 \mathrm{~N} /$ tonne , find the maximum possible starting acceleration

QUESTION FOUR

Determine the magnitude of forces acting in the truss shown in Figure question four below and for each member, state whether it is in tension or compression .

Figure Question Four
[20]

QUESTION FIVE

A 400 kg aluminium block rests on a plane inclined at 30 degrees to the horizontal and is hauled up the incline using force P inclined at 30 degrees to and above the plane. The co-efficient of friction between the surfaces in contact is 0,25 . Determine the magnitude of force P required to haul the copper block up the incline.

QUESTION SIX

A table carrying a machine tool is traversed by a three start screw of pitch 4 mm . The mass of the table is 300 kg and the co-efficient of friction between the table and its guides is 0.1 . The screw is driven by a motor rotating at $12 \mathrm{revs} / \mathrm{sec}$. The efficiency of the operation is 80%.

Find: a) the speed of operation of the tool per minute.
a) Determine the power required

QUESTION SEVEN

a) A diameter 100 mm shaft, 140 mm long is machined down to diameter 80 mm over a length of 60 mm and then drilled to diameter 40 mm over a length of 40 mm from the diameter 100 mm end.

Determine the centre of gravity of the shaft from the diameter 100 mm end
b) Train A leaves a station at an acceleration of $0.3 \mathrm{~m} / \mathrm{sec}^{2}$ and train B leaves the same station 10 seconds later, at an acceleration rate of $0,45 \mathrm{~m} / \mathrm{sec}^{2}$. Determine the distance travelled by the trains before train B catches up with train A .

