AATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF SCIENCE AND TECHNOLOGY EDUCATION DEPARTMENT OF TECHNICAL AND ENGINEERING EDUCATION AND TRAINING THERMODYNAMICS
PTE 2246
Main Examination Paper
May 2019
This examination paper consists of 4 pages

Time Allowed:	3 hours
Total Marks:	100
Special Requirements:	Nil
Examiner's Name:	Eng B. Sarema

INSTRUCTIONS AND INFORMATION TO CANDIDATE

- 1. Answer Question 1 and any other three (3) questions
- 2. Each question carries 25 marks
- 3. There are six (6) questions
- 4. Use of calculators is permissible
- 5. Thermodynamic Steam Tables may be used

Copyright: National University of Science and Technology, 2019

PTE 2246

QUESTION 1

Using the different power cycles, their schematic diagrams and relevant practical examples, discuss the role played by thermodynamics in the energy mix of a country like Zimbabwe.

QUESTION 2

- (a) Define thermodynamics as a field of study [4]
 (b) Explain the following thermodynamic systems giving a practical example of each system;
 (i) Open system [2]
 (ii) Closed system [2]
 (iii) Isolated system [2]
 (c) Explain the meaning of the different laws of thermodynamics [8]
- (d) In a steady-flow open system a fluid substance flows at the rate of 4 kg/s. It enters the system at a pressure of 600 kN/m², a velocity of 220 m/s, internal energy of 2200 kJ/kg and specific volume 0.42 m³/kg. It leaves the system at a pressure of 150 kN/m², a velocity of 145 m/s, internal energy 1650 kJ/kg and specific volume 1.5 m³/kg. During its passage through the system, the substance has a loss by heat transfer of 40 kJ/kg to the surroundings. Determine the power of the system, stating whether it is done by the system or on the system, Neglect any change in gravitational potential energy [7]

QUESTION 3

(a) Explain the following terms used in thermodynamics;

(i)	Heat energy	[2]
(ii)	Temperature	[2]
(iii)	Internal energy	[2]
(iv)	Entropy	[4]

(b) A quantity of steam at a pressure of 21 Bars and dryness fraction 0.9 occupies a volume of 0.427 m³. It is expanded according to the law $PV^{1.25} = C$ to a pressure of 7 Bars. Determine

(i)	The mass of the steam present	[3]
(ii)	The work transfer	[3]
(iii)	The change in internal energy	[4]
(iv)	The heat exchange between the steam and the surroundings, stating the o	lirection
	of flow.	[5]

[25]

QUESTION 4

(a) Describe the following thermodynamic processes;

(i)	Adiabatic process	[2]
(ii)	Isobaric process	[2]
(iii)	Isochoric process	[2]
(iv)	Isothermal process	[2]
(v)	Isentropic process	[2]

(b) A boiler delivers 5400 kg of steam/h at a pressure of 750 kN/m² and with a dryness fraction of 0.98. The feed water to the boiler is at a temperature of 41.5 °C. The coal used for firing the boiler has a calorific value of 31 000 kJ/kg and is used at a rate of 670 kg/h. Determine;

- (i) The thermal efficiency of the boiler [4]
- (ii) The equivalent evaporation of the boiler in kg/ coal [5]
- (iii) An economizer is fitted to the boiler which raises the feed water temperature to 100°C and the thermal efficiency of the boiler is increased by 5 %, all other conditions remaining unchanged. Determine the new coal consumption and hence the savings obtained from the economizer. [6]

QUESTION 5

- (a) Distinguish between the different ways in which heat energy can be transferred. [9]
- (b) Construct a Sankey diagram to represent energy flow in a steam turbine power plant. [9]
- (c) Distinguish between the Carnot efficiency and Thermal efficiency in a thermodynamic process.

QUESTION 6

(a) Using sketches, describe the principle of operation of the following refrigeration cycles;

(i)	Vapour compression cycle	[4]
(ii)	Vapour absorption cycle	[5]
(iii)	Vapour adsorption cycle	[3]
(iv)	Steam jet refrigeration cycle	[4]
(v)	Evaporative cooling cycle	[4]
Discus	ss the resolutions of the Montreal Protocol relating to some of the refrigerants.	[5]

(b)

APPENDIX

Press	Sat. temp.	Spec.	enthalpy	kJ/kg	Spec. vol
MN/m ²	t _f °C	hr	h_{tg}	h _s	v _s m ³ /kg
0-7	165	697·1	2064.9	2762.0	0.273
2-1	214.9	920-0	1878-2	2798-2	0.0949

EXTRACT FROM STEAM TABLES