. TIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF SCIENCE AND TECHNOLOGY EDUCATION
DIGITAL ELECTRONICS
PTE2254
MAIN Second Semester Examination Paper
May 2019

This examination paper consists of 4 pages
Time allowed: $\mathbf{3}$ hours
Total Marks: 100
Special requirements: NONE
Examiner's name: Mrs D. Chasokela

INSTRUCTIONS

1. The paper has 4 printed pages.
2. Each question carries 25 marks.
3. Answer question 1 and any 3 questions.
4. Start your answer for each question on a fresh page.

MARK ALLOCATION

QUESTION	MARKS
1.	$\mathbf{2 5}$
2.	$\mathbf{2 5}$
3	$\mathbf{2 5}$
4.	$\mathbf{2 5}$
5.	$\mathbf{2 5}$
TOTAL	$\mathbf{1 0 0}$

Page 1 of 3

QUESTION 1

(a) Represent an XOR gate using symbol, truth table and equivalent circuit diagram.
[9 marks]
(b) Convert the following:

(i) 133_{8} to decimal equivalent	(ii) 91_{10} to octal equivalent
(iii) 24,68 to decimal equivalent	(iv) 423_{10} to Hex equivalent
(v) Hex 9F2 1_{6} to binary equivalent	10111101_{2} to octal equivalent
$21,125_{10}$ to binary equivalent	37_{10} to binary equivalent
$10111_{2}+10010_{2}$	$10111_{2} \times 101_{2}$
$0,0011_{2}+0,1110_{2}$	$1110_{2} \times 111_{2}$
$101011_{2}-10010_{2}$	$11001_{2} \div 101_{2}$
$1101_{2}-1011_{2}$	$1110011_{2} \div 101_{2}$

[16 marks]

QUESTION 2

Illustrate a BCD 7 segment decoder using a block diagram and a truth table.
[25 marks]

QUESTION 3

(a)

(b) $(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})=\mathrm{A}+\mathrm{BC}$
(c) Draw a logic circuit to implement the expression $\mathrm{X}=\mathrm{AB}+\overline{\mathrm{B}} \mathrm{C}$
(d) Represent logic 0 and 1 in possible states of a circuit.

Page 1 of 3

QUESTION 4

(a) A truth table with variables ABC and output D has output $0,0,1,1,0,1,0,1$. Create a truth table and represent the Boolean equation using a Karnaugh Map. [10 marks]
(b) Simplify the following in Boolean form:
(i) $\mathrm{Y}=[\overline{\overline{\mathrm{A}}+\mathrm{B}) \cdot \mathrm{C} \cdot \overline{\mathrm{D}}}]$
(ii) $\mathrm{Y}=\mathrm{AB} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{BC}}$
(iii)

[5 marks]

QUESTION 5

Draw and explain an SR Latch flip flop.
[25 marks]

END OF EXAMINATION

Page 1 of 3

