Drawe to Oracle Internal

ATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF SCIENCE AND TECHNOLOGY EDUCATION DIGITAL ELECTRONICS

PTE2254

MAIN Second Semester Examination Paper

May 2019

This examination paper consists of 4 pages

Time allowed: 3 hours

Total Marks: 100

Special requirements: NONE

Examiner's name: Mrs D. Chasokela

INSTRUCTIONS

1. The paper has 4 printed pages.

- 2. Each question carries 25 marks.
- 3. Answer question 1 and any 3 questions.
- 4. Start your answer for each question on a fresh page.

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3	25
4.	25
5.	25
TOTAL	100

Page 1 of 3

Copyright: National University of Science and Technology 2019 PTE2254

QUESTION 1

(a) Represent an XOR gate using symbol, truth table and equivalent circuit diagram.

[9 marks]

(b) Convert the following:

(i) 133 ₈ to decimal equivalent	(ii) 91 ₁₀ to octal equivalent
(iii) 24,68 to decimal equivalent	(iv) 423 ₁₀ to Hex equivalent
(v) Hex 9F2 ₁₆ to binary equivalent	10111101 ₂ to octal equivalent
21,125 ₁₀ to binary equivalent	37 ₁₀ to binary equivalent
101112+100102	10111 ₂ ×101 ₂
0,00112+0,11102	1110 ₂ ×111 ₂
1010112-100102	$11001_2 \div 101_2$
11012-10112	1110011 ₂ ÷101 ₂

[16 marks]

QUESTION 2

Illustrate a BCD 7 segment decoder using a block diagram and a truth table. [25 marks]

QUESTION 3

(a) A + B = A + A + B [5 marks]

(b) (A+B)(A+C)=A+BC [5 marks]

(c) Draw a logic circuit to implement the expression $X=A B + \overline{B} C$ [5 marks]

(d) Represent logic 0 and 1 in possible states of a circuit. [10 marks]

Page 1 of 3

QUESTION 4

- (a) A truth table with variables ABC and output D has output 0, 0, 1, 1, 0, 1, 0, 1. Create a truth table and represent the Boolean equation using a Karnaugh Map. [10 marks]
- (b) Simplify the following in Boolean form:

(i)
$$Y = [\overline{(A + B)} \cdot C.\overline{D}]$$
 [5 marks]

(ii)
$$Y = A B \overline{C} + A \overline{B} \overline{C}$$
 [5 marks]

(iii)

[5 marks]

QUESTION 5

Draw and explain an SR Latch flip flop.

[25 marks]

END OF EXAMINATION

Page 1 of 3

Copyright: National University of Science and Technology 2019 PTE2254