NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF TECHNICAL TEACHER EDUCATION

GENERAL EXAMINATION

SPH 1106 – MODERN PHYSICS FOR CHEMISTS

BEd PART 1: September 2010

DURATION: 3 HOURS

Instructions To Candidates:

- 1. Answer <u>ALL</u> parts of question 1 in Section A.
- 2. Answer any **THREE** questions from Section B.
- 3. Section A carries 40 marks and section B carries 60 marks.
- 4. Show all your steps clearly in any calculation.

Planak's Constant	$h = 6.62 \times 10^{-34}$
Flatick's Constant,	11=0.03 X 10 J.S
Electron rest mass,	$m = 9.11 \times 10^{-51} \text{ kg}$
Speed of light,	$c = 3.00 \times 10^8 \text{ m s}$
1 electron volt	$e = 1.60 \times 10^{-19} J$
Mass of electron,	$m_e = 5.48 \times 10^{-4} u$
Mass of proton,	m <i>p</i> = 1.007 825 u
Mass of neutron,	$m_n = 1.008665u$
1 atomic mass unit,	$1u = 931.49 \text{ MeV/c}^2$
Electronic Charge,	$e = 1.60 \times 10^{-19} C$
Stefan – Boltzmann constant	$\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{ .K}^4$
Wien's constant,	$k = 2.899 \times 10^{-3} m.K$
Mass of Helium	${}^{4}H_{e} = 4.002\ 603\ u$
Mass of Oxygen	¹⁶ ₈ <i>O</i> = 15.9994 u
Mass of Hydrogen	$^{1}H = 1.007825u$
Radius of Earth	$R_E = 6.37 x 10^6 m$

SECTION A

1	(a)	(i)	Define a blackbody	[2]
		(ii)	Define the Bohr radius	[2]
	(b)	Electr 4.6 x	ons are ejected from a metallic surface with speeds ranging u 10^5 m/s when light of wavelength $^{\lambda}$ =625 nm is used.	ip to
		(i)	What is the work function of the surface?	[2]
		(ii)	What is the cutoff frequency for this surface?	[2]
		(iii)	Define the stopping potential?	[2]
		(ii)	What is the temperature of the black body whose emitted rac most intense at a wavelength of $0.9\mu m$.	diation is [3]
	(c)	(i)	State Bohr's postulates for his model of the atom.	[3]
		(ii)	What does the "Ground state" mean for the hydrogen atom a is energy associated with this state negative?	and why [4]
		(iii)	Explain what is meant by wave particle duality.	[3]
	(d)	(i)	State the conditions required to sustain nuclear fusion ir	n stars? [3]
		(ii)	At what speed must an electron move so that its de Brog wavelength equals its Compton wavelength?	glie [4]
	(e)	Calcu tube o	ulate the minimum wavelength of X-ray photons from an X operating at 10 kV.	K-ray [4]
	(f)	Deter ${}^{4}_{2}He$	mine the mass deficit and the binding energy per nucleo	n of [6]

SECTION B

2.	(a) With the aid of diagrams describe the generation x-rays in an x-ray tul making particular reference to the various processes an energies involve		
	(b) Define somatic and genetic damage.		
	(c)	(i) Write down the electronic configuration of the ground state for carbon (Z=6). [2]	
		(ii) Write out the values for the set of quantum numbers n,l,m_l,m_s for each of the electrons in carbon. [8]	
3.	(a)	Briefly describe an application of the photoelectric effect. [2]	
	(b)	When sodium metal is illuminated with light of wavelength 2.9 x 10^2 nm, the maximum kinetic energy of the ejected photoelectrons is 3.69eV	
		(i) Define the term 'work function'. [2]	
		(ii) Find the 'work function' of sodium. [3]	
	(c)	With the aid of diagrams describe the processes of pair production and pair annihilation. [8]	
	(d)	Give the generic equations for beta decay and state the properties of a neutrino. [5]	
4.	(a)	A sample of living tissue has activity of 12 Ci. Knowing that the half life of carbon-14 is 5730 years calculate the age of a fossil whose activity is 8 Ci. [5]	
	(b)	Write down the reaction equations of the proton-proton cycle. [3]	
	(c)	Describe the operation of an electron microscope with particular reference to wave properties of electrons. [8]	
	(d)	What is the kinetic energy of electrons with a wavelength of 1.0×10^{-11} m? [4]	

- 5. a) Give a detailed description with the aid of diagrams of the generation of bremsstrahlung radiation and characteristic radiation.
 - [7]
 - (b) State Bohr's postulates of the hydrogen atom. [5]
 - (c) List the all the quantum numbers and the limits of what values they can take. [8]
- 6. a) Show that the radius for the nth orbit of Bohr's model of the hydrogen atom is given by:

$$r_n = \frac{4\pi\varepsilon_0^2}{me^2} n^2$$

[7]

- (b) Calculate the volume of a proton (hydrogen nucleus). [4]
- (c) Calculate the volume of the hydrogen atom when it is in its ground state. [4]
- (d) Hence comment on Rutherford's planetary model of the atom. [3]
- (e) State Bohr's correspondence principle. [2]

END OF EXAM