NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 Bed Physics

Test 1: SPH1201 WAVES AND VIBRATIONS: Duration: 2hr 30min
Date : 24 September 2010

1. (a) The figure below illustrates coupled oscillations of a loaded string.

(i) Show that the equation of motion for the $r^{\text {th }}$ mass is given by:-

$$
\begin{equation*}
\left(\frac{d^{2} y_{r}}{d t^{2}}\right)=\frac{T}{m_{a}}\left(y_{r-1}+y_{r+1}-2 y_{r}\right) \tag{5}
\end{equation*}
$$

(ii) By considering $y_{r}=A r e^{i \omega t}$, show that this equation can be reduced to:

$$
\begin{equation*}
-A r-1+\left(2-\frac{m a \omega^{2}}{T}\right) A r-A r+1=0 \tag{5}
\end{equation*}
$$

(iii) Show how equation (i) by considering appropriate limits can be used to derive the Wave Equation.
(v) Show that the dimensions of ρ / T are similar to those of $\frac{1}{v^{2}}$.
2. Show that the Kinetic energy for one wavelength for a mechanical progressive wave is given by: $K E=\frac{1}{4} \lambda \mu U_{0}^{2}$, where μ mass per unit length and $U_{0}=2 \pi f A$, and A is he Amplitude.
[10]
3. (a) Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 3.00 m away. Define the width of bright fringe as the distance between the minima on either side.
(i) What is the width of the central bright fringe?
(ii) What is the width of the first bright fringe on either side of the central one?
(b) Deduce an expression for the Brewster angle and Calculate the Brewster angle for a material having a refractive index of 3.5.
(c) Unpolarized light with intensity I_{0} passes through a linear polarizer. It then passes through a second polarizer (the second polarizer is usually called the analyzer) whose transmission axis makes and angle of 30° with the transmission axis of the first polarized. What is the intensity of the light after the second polarizer, in terms of the intensity of the initial light?
4. The equation of a certain transverse wave is:

$$
y(x, t)=(4.00 \mathrm{~cm}) \sin 2 \pi\left|\frac{t}{0.0300 \mathrm{~s}}-\frac{x}{50.0 \mathrm{~cm}}\right|
$$

Determine the waves:-
(i) Amplitude
(ii) Wavelength
(iii) Frequency
(iv) Speed of propagation.
(v) In which direction is the wave propagating.
5. The following two waves in a medium are superposed:

$$
Y_{1}=A \sin (5 x-10 t) \text { and } Y_{2}=A \sin (4 x-9 t)
$$

Where x is in metres and t in sec:-
(i) Write an equation of combined disturbance
(ii) What is its group velocity?
(iii) What is the disturbance between points amplitude in the combined disturbance?
6. A person on a railroad car blows a trumpet sounding at 440 Hz . The car is moving toward a wall at $20 \mathrm{~ms}^{-1}$. Taking the speed of sound to be $343 \mathrm{~ms}^{-1}$:-Calculate:-
(i) The frequency of the sound as received at the wall
(ii) The frequency of the reflected sound arriving back at the source.

THE END

