NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

Bed Physics

Test 1: SPH1201 WAVES AND VIBRATIONS: Duration: 2hr 30min

Date: 24 September 2010

1. (a) The figure below illustrates coupled oscillations of a loaded string.

n equal masses (m) are spaced at equal distances (a),

(i) Show that the equation of motion for the
$$r^{th}$$
 mass is given by:-

$$\left(\frac{d^2 y_r}{dt^2}\right) = \frac{T}{m_a} (y_{r-1} + y_{r+1} - 2y_r)$$
[5]

(ii) By considering $y_r = Are^{i\omega t}$, show that this equation can be reduced to:

$$-Ar - 1 + \left(2 - \frac{ma\omega^2}{T}\right)Ar - Ar + 1 = 0$$
[5]

(iii) Show how equation (i) by considering appropriate limits can be used to derive the *Wave Equation*. [7]

- (v) Show that the dimensions of $\frac{\rho}{T}$ are similar to those of $\frac{1}{v^2}$. [3]
- 2. Show that the Kinetic energy for one wavelength for a mechanical progressive wave is given by: $KE = \frac{1}{4} \lambda \mu U_0^2$, where μ mass per unit length and $U_0 = 2\pi f A$, and A is he Amplitude. [10]

- 3. (a) Red light of wavelength 633nm from a helium-neon laser passes through a slit
 0.350mm wide. The diffraction pattern is observed on a screen 3.00m away. Define the width of bright fringe as the distance between the minima on either side.
 - (i) What is the width of the central bright fringe? [6]
 - (ii) What is the width of the first bright fringe on either side of the central one? [5]
 - (b) Deduce an expression for the Brewster angle and Calculate the Brewster angle for a material having a refractive index of 3.5.
 [8]
 - (c) Unpolarized light with intensity I_0 passes through a linear polarizer. It then passes through a second polarizer (the second polarizer is usually called the analyzer) whose transmission axis makes and angle of 30^0 with the transmission axis of the first polarized. What is the intensity of the light after the second polarizer, in terms of the intensity of the initial light? [4]
- 4. The equation of a certain transverse wave is:

$$y(x,t) = (4.00cm)\sin 2\pi \left| \frac{t}{0.0300s} - \frac{x}{50.0cm} \right|$$

Determine the waves:-

(i)	Amplitude	[5]
(ii)	Wavelength	[5]
(iii)	Frequency	[5]
(iv)	Speed of propagation.	[5]
(v)	In which direction is the wave propagating.	[5]
The following	two waves in a medium are superposed: $Y_1 = Asin(5x - 10t)$ and $Y_2 = A sin(4x - 9t)$ x is in metres and t in sec:-	
(i)	Write an equation of combined disturbance	[5]
(i) (ii)	What is its group velocity?	[5]
(iii)	What is the disturbance between points amplitude in the	combined
	disturbance?	[5]

- 6. A person on a railroad car blows a trumpet sounding at 440 Hz. The car is moving toward a wall at 20 ms⁻¹. Taking the speed of sound to be 343ms⁻¹:-Calculate:-
 - (i) The frequency of the sound as received at the wall [6]
 - (ii) The frequency of the reflected sound arriving back at the source. [6]

THE END

5.