NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY Faculty of Industrial Technology Department of Technical Teacher Education Bachelor of Education Honours Degree MATERIALS SCIENCE - TTE 0139 Bridging Examination January 2011

Instructions

- 1. Examination length is **3hrs**.
- 2. Each question carries twenty (25) marks and there are five (5) questions in total.
- 3. Answer any four questions.

Question 1

- a. Sketch FCC, BCC, and HCP unit cells and for each give a metal of that structure. [15]
- b. Copper has an atomic radius of 0.128 nm, an FCC crystal structure with a lattice parameter of 0.362 nm, and an atomic weight of 63.5 g/mol. Compute its theoretical density given that Avogadro's constant is 6.02 x 10²³ atoms/g.mol. [5]
- c. Show for the face-centred cubic crystal structure that the unit cell edge length a and the atomic diameter d are related through

[5]

 $a = d\sqrt{2}$

Question 2

- a. Explain the concept of strain hardening. [5]
- b. The commercial use of steels exceeds that of any other engineering material. Is it necessary to do heat treatment of steels? [5]
- c. Discuss the stages of an annealing heat treatment cycle, with specific reference to the changes in mechanical properties, and grain structure and size. [15]

Question 3

- a. Figure Q4 in Appendix A is a schematic illustration of one primary bonding type found in materials.
 - i. Give the name of this bond and the materials that exhibit this type of bonding. [3]
 - ii. Explain the properties of these materials that are a result of this bonding. [7]
- iii. Make a neat sketch of an almost similar type of atomic bond and explain how it is formed and its nature. [9]
- b. Polymers have low melting points and densities. How is this related to the atomic bonding?

[6]

Question 4

a.	Define a phase.	[4]	
b.	Given in Table Q5 in Appendix A are the solidus and liquidus temperatures for the coppe		
	(Cu) - nickel (Ni) system. Construct on graph paper the phase diagram for this system and		
	label each region.	[10]	
c.	For an alloy with a nominal composition of 45% copper – 55% nickel determine		
i	. The phases present at 1290°C.	[3]	
ii	. The amounts of these phases	[8]	

Question 5

a.	Explain why we study materials.	[5]
b.	Materials are classified into four main groups. Write a brief but concise discussion on	each of
	the four classes, with specific reference to the typical properties and applications.	[20]

End of exam

2

<u>Appendix A</u>

Figure Q4

Table Q5

Composition	Solidus Temperature	Liquidus Temperature
Weight % (Ni)	(°C)	(°C)
0	1085	1085
20	1160	1197
40	1240	1280
60	1313	1350
80	1380	1405
90	1420	1435
100	1453	1453