NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF TECHNICAL TEACHER EDUCATION COURSE: Thermodynamics
 COURSE CODE: 0147
 PART: 0 - BRIDGING
 YEAR: 2011

$\mathbf{1}^{\text {st }}$ SEMESTER EXAMINATIONS January 2011

Duration : 3 hours

Answer 5 questions

QU 1.
i). Define the term thermodynamics
(ii). State and explain the four laws of thermodynamics
(iii).Explain briefly the origins and development of thermodynamics as a field of study [6]

Qu 2.

An air receiver of volume $6 \mathrm{~m}^{3}$ contains air at 15 bar and $40.5^{\circ} \mathrm{C}$. A valve is opened and some air is allowed to blow out to atmosphere. The pressure of the air in the receiver drops rapidly to 12bar when the valve is then closed. Calculate the mass of air which has left the receiver. Take $\mathrm{R}=0.287 \mathrm{KJ} / \mathrm{kgK}$

Qu3.

1 kg of a perfect gas is compressed from $1.1 \mathrm{bar}, 27^{\circ} \mathrm{C}$ according to a law $\mathrm{pv}{ }^{1.3}$ until the pressure is 6.6bar. Calculate the heat flow to or from the cylinder walls when the gas is ethane (molar mass $30 \mathrm{~kg} / \mathrm{kmol}$) which has $\mathrm{c}_{\mathrm{p}}=2.10 \mathrm{~kJ} / \mathrm{kgK}$

Qu4

air flows steadily at the rate of $0.4 \mathrm{~kg} / \mathrm{s}$ through an air compressor, entering at $6 \mathrm{~m} / \mathrm{s}$ with a pressure of 1 bar and a specific volume of $0.85 \mathrm{~m}^{3} / \mathrm{kg}$ and leaving at $4.5 \mathrm{~m} / \mathrm{s}$ with a pressure of 6.9 bar and specific volume of $0.16 \mathrm{~m}^{3} / \mathrm{kg}$. The specific internal energy of air leaving is $88 \mathrm{~kJ} / \mathrm{kg}$ greater than that of air entering. The cooling water in the jacket surrounding the cylinder absorbs heat from the air at the rate of 59 kW . Calculate:
i). the power required to drive the compressor
ii). the inlet and outlet pipe cross-sectional area

Qu 5

i). In the compression stroke of an internal combustion engine the heat rejected to the cooling water is 45 kJkg and the work input is $90 \mathrm{~kJ} / \mathrm{kg}$. Calculate the change in specific internal energy of the working fluid stating whether it is loss or a gain.
ii).explain the term reversibility, what are its applications

qu 6

0.25 kg of air at apressure of $140 \mathrm{KN} / \mathrm{m}^{2}$ occupies $0.15 \mathrm{~m}^{3}$ and from this condition it is compressed to1.4MN/m according to the law $\mathrm{PV}^{1.25}=\mathrm{C}$. Determine:
i) The change in internal energy of the air
ii). The work done on or by the air
iii). Heat received or rejected by the air

Take $c_{p}=1.005 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{C}_{\mathrm{V}}=0.718 \mathrm{KJ} / \mathrm{KgK}$.

QU7

A quantity of gas occupies $0.4 \mathrm{~m}^{3}$ at a pressure of $100 \mathrm{kN} / \mathrm{m}^{2}$ and temperature of $20^{\circ} \mathrm{C}$. The gas is compressed isothermally to a pressure of $450 \mathrm{kN} / \mathrm{m}^{2}$ and then expanded adiabatically to its initial volume. Determine;
i). the heat transferred during compression
ii). the change in internal energy during expansion
iii).the mass of the gas
gamma $=1.4 \mathrm{Cp}=1.0 \mathrm{~kJ} / \mathrm{kgK}$

END OF EXAMINATION

