NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF TECHNICAL TEACHER EDUCATION

Programme: BACHELOR OF EDUCATION HONOURS DEGREE

SUPPLEMENTARY EXAMINATION

Course: Genetics TTE 1137

Part/year: I January 2011

Time: 3 hours 100 marks

Instructions

- 1. Answer any **FOUR** [4] questions.
- 2. Questions maybe answered in any order
- 3. All questions carry [25 marks] each
- 1(a) Each of the following F₂ phenotypic ratios of offspring may result from crossing two F₁ individuals each heterozygous for two autosomal genes. Explain with the aid of examples the phenomena underlying each ratio:

(i) 15:1 (5 marks)

(ii) 9:7 (5 marks)

(iii) 9:3:4 (5 marks)

- (b) Using examples briefly describe the different allelic interactions that lead to deviations from the classical Mendelian observations. (10 marks)
- 2(a) The frequency of newborn infants homozygous for the recessive lethal allele is about 1 in 25 000. Calculate the expected frequency of the carriers of this allele in the population. (5 marks)
- 2(b) In Tuli cattle the genotype C^RC^R is phenotypically red, C^RC^W is roan (a mixture of red and white) and C^WC^W is white. A population of Tulis found in Gwanda district had 728 red, 924 roam and 215 white animals. Use an appropriate statistical test to determine if this cattle population is in Hardy-Weinberg equilibrium. (20 marks)
- 3. In maize a variety homozygous for recessive gene a (green), d (dwarf), and rg (normal leaves) was crossed to a variety homozygous for their dominant alleles A (red), D (tall) and Rg (ragged

leaves). Offspring of this cross were then backcrossed to homozygous recessive plants, the progeny of this back cross are listed below:

Phenotype	Number
A D Rg	265
a d rg	275
A D rg	24
a d Rg	16
A d rg	90
a D Rg	70
A d Rg	120
a D rg	140

(a) Which of the above phenotypic classes represent crossovers between:

(i)	a and d ?	(2 marks)
(ii)	d and rg ?	(2 marks)
(iii)	a and rg ?	(2 marks)

(b) Propose a linkage map with distances between these genes. (15 marks)

(c) Calculate the degree of interference for this cross. (4 marks)

- 4. Write an essay on an uploidy and euploidy and briefly discuss their role in agricultural and medical genetics.
- 5. Describe the different probability rules that are used in genetic analysis, illustrate your answer with appropriate examples.
- 6. Write short notes on the following:

(i) Expressivity and penetrance.	(10 marks)
----------------------------------	------------

(ii) Narrow sense and realised heritability. (10 marks)

(iii) Sex influenced and sex limited traits (5 marks)

END OF EXAMINATION