NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF TECHNICAL TEACHER EDUCATION

Programme: BACHELOR OF EDUCATION HONOURS DEGREE

Course:	Manufacturing Processes	TTE 3246
Part/year:	III	May 2010
Time:	3 hours	100 marks

Instructions

- 1. Examination length is **3hrs**.
- 2. Each question carries twenty (20) marks and there are six (6) questions in total.
- 3. Attempt the whole of Section A and three questions from Section B.

Section A

Question 1

a) Briefly discuss the limitations of sand casting.	
---	--

[6]

b) Outline the continuous casting of steel, using illustrations where appropriate. [14]

Question 2

a)	Draw two sketches showing the basic difference between impression-die	and closed-die
	forging.	[6]
b)	Make illustrations showing the essential features of	
i)	Forward extrusion.	[3]
ii)	Reverse extrusion.	[3]
c)	List various operations generally performed in a sheet metal shop.	[8]

Section B

[8]

[4]

[4]

Question 3

- a) Explain any four types of defects that occur during sheet metalworking processes.
- b) You are given the following data for a bending operation.
 - L1 = 25mm R1 = 8mm $\alpha_1 = 30t = 3mm$
 - $L_2 = 50mm$ $R_2 = 10mm$ $\alpha_2 = 120$ $L_2 = 15mm$ $R_2 = 10mm$ $\alpha_2 = 00$
 - L3 = 15mm R3 = 10mm $\alpha_3 = 90$
 - L4 = 10mm
- i) Sketch this shape.
- ii) What is the total length of the strip needed to make the shape?
- iii) Find the engineering strain and the true strain in the outer fibre at the bend, where R = 8mm. [4]

Question 4

A square bar, 5 mm x 5 mm in cross section and 100 mm long is to be flattened into a section that is only 2 mm thick and remains 100 mm in length. The press velocity is 2 m/min. The coefficient of friction is 0.10, with a lubricant. Strength coefficient in cold working is 620 MPa and in hot working is 120 MPa, strain hardening exponent n is 0.18, and strain rate sensitivity m is 0.10 at 1000° C.

a)	Make a sketch of the bar before and after deformation.	[4]
b)	Determine	
i)	Engineering strain in the height direction.	[2]
ii)	True strain in the height direction.	[2]
iii)	True strain rate.	[2]
iv)	Mean flow stress.	[2]
v)	Flow stress if the part is formed at 1000°C.	[2]
vi)	Deformation force at 1000°C.	[3]
vii)	Power required for deformation at 1000°C.	[3]

Question 5

In an interview for a foundry job in Shanghai, China, you are asked to describe, briefly, the essential features of the two high pressure die casting processes. Clarify the method of filling the cavity.

[20]

Question 6 a) Define castability. [2] Why are steels more difficult to cast than cast irons? b) [2] What are the differences in the properties of castings made by permanent mould c) compared to sand casting methods? Explain. [6] d) State the most important factors in casting processes. [4] Turbulence is undesirable in melt flow in gating systems. Explain why and how it can be e) minimised. [6]

END OF EXAMINATION